В центре бурных дебатов стоит двадцативосьмилетний доктор химии, чье заявление на получение доцентуры в качестве приват-доцента как раз рассматривается. Он страстно защищает новейший накопленный опыт международных исследований. Он может рассказать впечатляющие детали об экспериментах, которые по всем правилам химического искусства доказали, что радон не поддается вступлению ни во временные, ни в прочные соединения. Что однозначно доказывает его природу инертного газа. Как-никак молодой человек обучался в Лондоне у Уильяма Рамсея, открывшего инертные газы аргон, криптон и ксенон. Некоторым профессорам старшего поколения в голосе ученика Рамсея чудится самонадеянность и непочтительность. Его прямодушные возражения они воспринимают как дерзость. Да кто он такой, негодует один из присутствующих. "Это такой англизированный берлинец", - насмешливо говорит другой, ведь слово "англизированный" может означать и подрезанный хвост лошади, а слово "берлинец" тем более многозначно: от пончика до дорожного узелка.
Правда, родился Отто Ган, этот англизированный берлинец, во Франкфурте-на-Майне. Начиная изучать химию в Марбурге, младший сын состоятельного стекольного фабриканта проявляет мало рвения и честолюбия. После первой огорчительной лекции по математике этот предмет для него умер. С куда большей выносливостью он справляется с комплексными задачами по выпивке. Долгое время его отец на вопросы об успехах отпрыска без всяких церемоний отвечает, что основной интерес Отто сосредоточен на пиве. Тем не менее тот выдерживает докторский экзамен с оценкой "magna cum laude" ("с большим почетом"). Хотя призвания к исследовательским занятиям в себе не чувствует. Ему видится скорее должность промышленного химика. Научный руководитель его докторской диссертации советует ему пожить за границей, чтобы он смог за счет знания иностранных языков повысить шансы своей карьеры в бурно расширяющейся химической отрасли Германии. Так в октябре 1904 года Отто Ган попадает в институт Уильяма Рамсея в Университетском колледже Лондона. Со странной пассивностью он просит у Рамсея о задании. Тот сразу швыряет его в холодную воду. Радиоактивность? Нет, об этом Гану не приходилось слышать во время его учебы в Марбурге и Мюнхене.
А Рамсею незадолго до этого доставили пять центнеров высокорадиоактивного минерала торианита, содержащего торий, и эти пять центнеров с тех пор сократились до 100 граммов соли бария. И вот Рамсей дает своему немецкому ассистенту задание выделить из этого вещества приблизительно подсчитанные 10 миллиграммов радия. Послушник Отто Ган основательно готовится к своему испытанию, штудирует тогда еще обозримую литературу по этому предмету, слушает лекции Рамсея и затем приступает к работе с тщанием и острой наблюдательностью, которая в будущем станет его отличительной чертой. Толковым везет, и ему с самого начала сопутствует удача. Уже скоро он маневрирует на тех же путях познания, какими шла Мария Кюри, у которой смоляная обманка после отделения урана все еще продолжала излучать, благодаря чему был открыт новый элемент. После того как Отто Ган выделил из эссенции торианита радий, остатки продолжают проявлять радиоактивность. Интенсивность излучения, однако, не сопоставима ни с одним из известных в то время радиоактивных элементов. Когда после повторений опыта и перестраховки он смог исключить ложный вывод, обусловленный неопытностью, новый радиоактивный элемент назван им с заслуженной гордостью открывателя радиотором. Он излучает в 250 000 раз сильнее тория. Гана не подвело верное чутье и смелость рук ремесленника. Руководитель института Рамсей обрадован и объявляет об открытии Гана на заседании Королевского общества шестнадцатого марта 1905 года.
Ган набрался в Лондоне достаточной уверенности в себе. Свой следующий практикум он выполняет у Эрнеста Резерфорда в Монреале. У него он учится импровизировать, мастерить из табакерок, баллонов из-под масла и консервных банок действующие аппараты для проверки радиоактивных веществ. Но и в лаборатории Резерфорда, фонтанирующего энергией и воодушевлением, давно уже облучены все инструменты и оборудование, так что измерения слабых по природе излучений приходится проводить в других помещениях. Как и Гизель и супруги Кюри, Резерфорд сам уже стал радиоактивным источником. Однажды он чинит сломанный электрометр на рабочем столе Гана. Прибор после починки хоть и заработал, но зато теперь излучает. Методом сцинтилляций Ган исследует альфа-излучение "своего" радиотора и погружается в чарующие световые явления сернистоцинкового экрана. И в Монреале он тоже открывает сразу два новых элемента, так что мастер на прощанье выдает ему свидетельство на совершенно особый нюх.
Химический институт Берлинского университета возглавляет Эмиль Фишер, нобелевский лауреат 1902 года. По возвращении из Канады в октябре 1906 года Гану разрешено оборудовать под лабораторию пустующую столярную мастерскую на первом этаже. Правда, на признание и уважение коллег он рассчитывать не может. Профессия радиохимика все еще не принимается всерьез, а некоторые органические химики ее органически не переносят. Когда на факультете вывешивают его заявление на получение доцентуры, на листке вскоре появляются пренебрежительные замечания. "Надо же, кто только не претендует нынче на доцентуру", - гласит комментарий одного сотрудника. Однако Гана не смущают предвзятые коллеги. В марте 1907 года он подтверждает в препарате тория присутствие "исходного вещества" своего радиотора и называет его мезотор.
Ведущие исследователи радия Кюри, Беккерель и Гизель демонстрировали вредное воздействие радия на человеческий организм на собственных телах с глубокими и плохо заживающими язвами. Пьер Кюри в своей нобелевской речи даже предостерегал от слишком легкомысленного обращения с высокорадиоактивными веществами. Говорил, что это может привести к потере двигательной способности и в конце концов стать смертельным. Он знал, о чем говорил. К тому времени ему было уже трудно удерживать пальцами пробирку. Однако когда австрийский физик Штефан Майер выясняет, что вода слывущих целебными термальных источников в Бад-Гаштайне радиоактивна, никто больше не хочет слышать никаких предостережений.
Не заставило себя ждать и то, что медики, встрепенувшись от радиационного бума, стали пристально приглядываться к урановым рудникам Санкт-Йоахимсталя. Якобы шахтеры там никогда не страдают ревматизмом, подагрой и невралгиями, чему причиной может быть постоянное испарение радона из радия - продукта распада урана. Мол, здесь радиоактивный воздух явно оказывает такое же воздействие, что в Бад-Гаштайне исходит от легендарной воды. Как раз в это время шахтные воды были официально признаны радиоактивными. Это грунтовая вода, постоянно сочащаяся в штольни сквозь щели и трещинки в налегающих породах. Одного предприимчивого йоахимстальского булочника Куна эта хорошая новость навела на коммерческую идею. С разрешения властей он нанял людей таскать ему в дом рудничную воду из шахт в деревянных дежах и стал предлагать ревматическим больным ванны, якобы облегчающие недуг. Разлитая в бутылки для питья, эта целебная вода конечно же должна была прописываться врачом, но исцеляла и без врача, продаваемая из-под прилавка, принося булочнику изрядный побочный доход. Пока четыре кабинки с ваннами, установленные рядом с пекарней в плачевных гигиенических условиях, еще только становятся зародышем будущей модной радийной водолечебницы Санкт-Йоахимсталь, курорт Бад-Гаштайн в земле Зальцбург, упоённый своим радиоактивным источником молодости, совершенно официально рекламирует себя стихами:
Чудодейственный источник Бад-Гаштайн.
Я сама купаюсь в ванне, полной тайн.
В излучающем бульоне поварюсь,
Снова девочкой-подростком обернусь.
В аптеках теперь можно купить кожаные мешочки, в которые расфасовано по 62 грамма смоляной обманки с содержанием оксида урана 43 %. Если носить такой мешочек на теле, то препарат своим излучением изведет ревматические заболевания. В пансионах и отелях расцветающих радийных курортов Санкт-Йоахимсталя каждый день подают к столу свежий хлеб, выпечку и даже пиво с добавлением радона. Одно фармацевтическое предприятие рекламирует свой продукт такой надписью на упаковке: "Доказательством биологического воздействия может служить тот факт, что полуминутное или минутное облучение уже вызывает покраснение кожи". И австрийская фабрика радия Нойленгбах продает свои радиоактивные грязи в виде порошка в мешках по пять килограммов для домашних ванн и обещает: "При длительном применении - поразительно стойкий эффект".
При таких коммерческих выгодах и беспечном увлечении новой терапией снабжение науки радием перекрывается. Когда Эрнест Резерфорд в 1907 году переезжает из Монреаля в Манчестер, он с трудом, всякими правдами и неправдами добывает приемлемое количество радия для особой серии опытов, которую намеревается поставить. В конце концов ему удается договориться с Венской академией наук. Он получает в длительное пользование 0,4 грамма хлорида радия - щедрость, которая творит историю. Ибо тут крохотное количество светоносной материи, освобожденной от многих тонн тяжелой, черной, как смола, породы, встречается с неповторимой силой воображения гения. И этой необычной встрече в нужный момент времени сообщество физиков обязано первым значительным прорывом во внутреннюю структуру атома.
Резерфорд чуть было не прозевал идеального сотрудника для своего прорывного эксперимента, ибо Ганс Вильгельм Гейгер, двадцатипятилетний докторант из Нойштадта, что стоит на "винодельческой дороге", только что окончил свою годичную стажировку в Физическом институте Манчестерского университета и уже укладывает чемодан для возвращения в Германию. Разговорившись с ним и увидев его выдающиеся способности экспериментатора, энергичный Резерфорд предлагает ему стать его ассистентом. Первым делом Резерфорду нужно усовершенствовать подсчет альфа-частиц, которые испускает радиоактивное вещество. Это должен взять на себя электрический прибор, разгрузив человеческий глаз. Вдохновившись идеями шефа, Гейгер разрабатывает опытную установку, из которой в конечном итоге получается так называемый "счетчик заряженных частиц", прототип счетчика Гейгера. При помощи нового прибора Резерфорд и Гейгер фиксируют, что один грамм радия испускает 34 000 000 000 альфа-частиц в секунду.
Альфа-магистру понятно, что они с Гансом Гейгером установили тем самым первый международный стандарт радиоактивности. После этого он осуществляет свою давно лелеемую мечту и покупает автомобиль "уолслей" с четырьмя сиденьями и пятнадцатью лошадиными силами. Машину пригоняет с завода шофер, который потом три дня живет у Резерфорда и дает хозяину уроки вождения. Но автомобильными прогулками наслаждаются не только его жена Мэй и дочь Айлин. Руководитель института регулярно приглашает и двадцать своих сотрудников из Японии, России, Германии, Америки и Англии группами по три человека на моторизованные вылазки на природу с отчаянной скоростью сорок километров в час. Хаим Вейцман, будущий президент Израиля, а в то время биохимик Манчестерского университета, описывает Резерфорда как "молодого, энергичного, неукротимого... Не было под солнцем ничего такого, о чем бы он не поддержал оживленного разговора, зачастую ничего в этом не понимая. Когда я шел обедать в столовую, по всем коридорам разносился его добродушный, громкий голос". Резерфорд явно замечал эту собственную черту характера и в других людях. Об одном своем закадычном друге он пишет: "Целый день лорд Кельвин рассуждал о радии, и меня восхищает самоуверенность, с какой он говорит на тему, в которой ровно ничего не смыслит". Один из его студентов видит в нем "вождя племени", который с каждым пошутит, шагая по лаборатории, сияющий, румяный и голубоглазый, и воодушевит своих студентов - не хорошо, но громко исполняемым - церковным гимном "Вперед, солдаты христианства".
В период между 1910 и 1912 годами Эрнест Резерфорд снова посвящает себя давней проблеме, которой он уже занимался в Монреале: взаимодействию излучения высокой энергии с материей. Луч из альфа-частиц, пройдя сквозь тонкую металлическую фольгу, становится нечетким. Несколько альфа-частиц явно отклонились на пути сквозь атомы металла. Что позволяет сделать заключение об огромных электрических силах внутри атома. Гансу Гейгеру и двадцатиоднолетнему студенту Эрнесту Марсдену поручено присмотреться к этому феномену. В их опытной установке им приходится опять вернуться к традиционным наблюдениям за световыми вспышками, поскольку искомое рассеяние не поддается автоматическому учету. На то и человеческий мозг, чтобы регистрировать отклонения. Лупу первых опытов Эльстера и Гейтеля уже давно заменил микроскоп с 70-кратным увеличением, на выходе которого закреплен сернистоцинковый экран. Этим привинченным экраном микроскоп заглублён в вакуумную камеру, где натянута тонкая золотая фольга, позади которой стоит источник радона.
Два физика пустились в трудоемкое дело. Они должны зрительно отсчитать 80 000 прямолинейно мчащихся сквозь атомы золота альфа-частиц, чтобы засечь пригоршню тех корпускул, которые отклонились в сторону. Время от времени они регистрируют рассеяние и под таким углом, который больше похож на возврат альфа-частиц к своему радоновому источнику. Этот феномен можно было заметить лишь при таком тщательном наблюдении за световыми вспышками, и он остается загадкой для Резерфорда и его ассистентов. Он ставит под сомнение все сложившиеся представления о структуре атома. Эти данные исключают равномерное распределение массы атома. Впоследствии Резерфорд сформулировал это так: "Это почти так же невероятно, как если бы швырнуть фанату на лист шелковой бумаги - и она рикошетом попала бы в тебя самого".
Результаты измерений Гейгера и долговременная статистика допускают такой вывод, что внутри атома золота вся его масса сконцентрирована в минимальном пространстве. Когда альфа-частица со скоростью 20 000 километров в секунду натыкается на это внутреннее ядро, она стопорится на лету сильным электрическим зарядом ядра и с ускорением отдачи отбрасывается назад к своему источнику. Все остальные альфа-частицы, пролетающие мимо ядра, более или менее сильно отклоняются от своей прямолинейной траектории. Но если почти все 80 000 альфа-лучей беспрепятственно пролетают сквозь золотую фольгу, то атом должен по большей части состоять из пустоты. И поскольку это ядро, nucleus, как нарекает гипотетическое образование Резерфорд, так редко задевается, оно должно быть невообразимо мало. Простой расчет соотношения приводит Резерфорда, Гейгера и Марсдена к поразительным выводам о размерности атомов. Если сам атом не больше чем стомиллионная доля сантиметра, то ядро должно быть еще меньше на 10 000 порядков.
Здесь, в Физическом институте Манчестерского университета как раз и формируется совершенно новое, хоть еще и несколько смутное представление о структуре атома. По мнению Резерфорда, ядро объединяет в себе почти всю массу атома. Оно положительно заряжено, тогда как электроны образуют наружную оболочку атома и заряжены отрицательно. Где еще, как не в этом крошечном ядре атома, мог бы происходить распад у радиоактивных элементов? Где еще, если не там, должна быть скрыта могучая атомарная энергия? Судя по всему, радиохимия на глазах превращается в "нуклеарную" науку, а именно в учение об атомном ядре.
Отто Ган принадлежит к числу первых ученых, которые узнали о волнующе новом представлении об атоме непосредственно из уст бывшего учителя. Они встречаются в Париже, в марте 1912 года как участники конференции Международной комиссии по радию. Мария Кюри демонстрирует там 22 миллиграмма высокочистого радия, запаянного в стеклянную трубку, в качестве международного стандарта радия. Как эталон он должен теперь храниться в Севре близ Парижа в Международной палате мер и весов. Тридцатитрехлетний профессор Ган считается между тем одним из ведущих радиохимиков мира. Год назад он во время поездки на пароходе в Штеттинской бухте познакомился со своей невестой Эдит Юнгханс, на которой собирается вскоре жениться. Может быть, хоть тогда, как он надеется, прекратятся слухи, которые ходят в институте у него за спиной. Ибо Ган с конца 1907 года работает вместе с женщиной, австрийской "фройляйн доктор".
Лиза Мейтнер, дочь еврейского адвоката, стала второй женщиной, получившей ученую степень доктора в Венском университете. Вообще-то директор Эмиль Фишер в принципе отвергает преподавательниц в своем институте. Такая установка согласуется с прусскими законами о высшем образовании, которые практически не дают возможности женщине сделать академическую карьеру. Однако для Лизы Мейтнер Фишер делает исключение. До тех пор пока она знает свое место в столярной мастерской Гана и не кажет носа в студенческих аудиториях и лабораториях, ей можно работать в Химическом институте. Разумеется, лишь в качестве вольной посетительницы и на собственный кошт. Ган и Мейтнер явно находят общий язык. Тут же возникают слухи и пересуды. Воспоминания Гана об этом периоде жизни звучат почти как запоздалое опровержение: "О нашем общении между собой вне стен института не могло быть и речи. Лиза Мейтнер к тому же и воспитана была как дитя высшего света, она была очень сдержанна, почти нелюдима... За многие годы я ни разу даже не обедал вместе с Лизой Мейтнер за пределами института. Мы никогда не прогуливались вместе. Лиза Мейтнер шла домой, и я шел домой. При этом мы все-таки были сердечными друзьями". Ган при этом человек общительный, в свободное время регулярно встречается с коллегами для обмена мыслями и... он поет. Сподвигнутый песнями, которые напевает Лиза в долгие часы их совместных измерений - а это Брамс, Шуман и Вольф, - он вливается в университетский певческий кружок "Хриплый фазан", в котором преобладают дамы. Гану грезится амурная атмосфера. Однако замыслил он - тем более что теперь он обручен - совсем другое, ведь здесь поют "племянницы Планка, дочери Гарнака... Дамы хорошего круга, а быть принятым в их семьях не так легко".
В 1911 году, по инициативе теолога Адольфа фон Гарнака, отца трех певучих дочерей из "Хриплого фазана", учреждается Общество кайзера Вильгельма - для содействия фундаментальным научным исследованиям. В октябре 1912 года открывают первое научное учреждение этого общества: Химический институт кайзера Вильгельма в берлинском Далеме с Эмилем Фишером во главе. Отто Ган должен руководить там отделом радиоактивности. Лиза Мейтнер приглашена и далее работать с Ганом в новом здании института. В это переломное для науки время в столице Германии распространяются и первые сообщения одной из новых многообещающих теорий, которую, по слухам, создал Фредерик Содди. Она неожиданно убедительно объясняет некоторые непонятные свойства радиоактивных веществ. К 1911 году найдено более двадцати новых радиоактивных элементов, в таком множестве они уже не помещаются в периодической системе, которая оказалась им тесновата, как слишком узкий корсет.