Книга британского физика и философа Дэвида Дойча, одного из создателей концепции квантовых вычислений, наглядно демонстрирует, что эпоха великих философских систем вовсе не осталась в прошлом. Автор выстраивает целостный и согласующийся с научными знаниями ответ на один из самых фундаментальных философских вопросов: какова подлинная природа реальности. По Дойчу ткань реальности, каковой она открывается любому носителю разума, сплетается из четырёх основных нитей. Это эпистемология Карла Поппера, раскрывающая путь научного знания; это квантовая механика, которая целостно интерпретируется лишь после признания реальность мультиверса - бесконечного ансамбля параллельных вселенных; это основанная Тьюрингом теория вычислений, без которой не понять природу математических объектов; и, наконец, это универсальная теория эволюции, объясняющая развитие не только жизни, но и цивилизации. Вдумчивый читатель будет поражён сочетанием широты и логической последовательности мысли автора. С его разъяснениями мультиверс перестаёт казаться фантастикой и становится наиболее естественным описанием той поразительной реальности, которую открыла нам современная наука. За рамками книги остаётся вопрос о месте и роли человека в столь причудливом мире. Этой теме посвящена другая работа Дэвида Дойча - "Начало бесконечности", которая служит органичным продолжением "Структуры реальности".
Содержание:
Предисловие 1
Благодарности 1
1. Теория Всего 1
2. Тени 9
3. Решение проблем 14
4. Критерии реальности 19
5. Виртуальная реальность 25
6. Универсальность и пределы вычислений 31
7. Диалог об обосновании, или Дэвид Дойч и криптоиндуктивист 36
8. Важность жизни 42
9. Квантовые компьютеры 49
10. Природа математики 57
11. Время: первая квантовая концепция 66
12. Путешествие во времени 74
13. Четыре нити 82
14. Конец вселенной 88
Библиография 94
Сноски 94
Дэвид Дойч
Структура реальности. Наука параллельных вселенных
Издательство благодарит Russian Quantum Center, Сергея Белоусова и Виктора Орловского за помощь в подготовке издания
Редактор Игорь Лисов
Редактор Russian Quantum Center Александр Сергеев
Руководитель проекта А. Тарасова
Корректор М. Миловидова
Компьютерная вёрстка А. Фоминов
Дизайнер обложки Ю. Буга
© David Deutsch, 1997
© Издание на русском языке, перевод, оформление. ООО "Альпина нон-фикшн", 2015
Посвящается памяти Карла Поппера, Хью Эверетта и Алана Тьюринга, а также Ричарду Докинзу. В этой книге их идеи восприняты всерьёз.
Предисловие
Если и существует единая мотивация для взгляда на мир, изложенного в этой книге, она заключена в том, что главным образом благодаря ряду экстраординарных научных открытий мы обладаем сейчас некоторыми чрезвычайно глубокими теориями о структуре реальности. Если мы хотим понять мир не поверхностно, а более глубоко, нам помогут эти теории и разум, а не наши предрассудки, приобретённые мнения, и даже не здравый смысл. Наши лучшие теории не только истиннее здравого смысла, но в них гораздо больше смысла, чем в здравом смысле. Мы должны воспринимать их серьёзно: не просто как практическую основу соответствующих областей, а как объяснение мира. Я полагаю, что мы сможем достичь величайшего понимания, если будем рассматривать их не по отдельности, а совместно, поскольку они связаны неразделимым образом.
Может показаться странным, что это предложение - постараться выработать рациональное и самосогласованное мировоззрение на основе наших лучших, наиболее фундаментальных теорий - является совершенно беспрецедентным и вызывает серьёзные разногласия. Но на практике получается именно так. Одна из причин заключается в том, что каждая из этих теорий, когда её воспринимают серьёзно, влечёт крайне контринтуитивные следствия. Поэтому предпринимаются всевозможные попытки избежать встречи с этими следствиями: теории специально изменяют или дают им иные интерпретации, произвольно сужают область их применимости или просто применяют на практике, не делая далеко идущих выводов. Я буду критиковать некоторые подобные попытки (ни одна из которых, по-моему, и гроша ломаного не стоит), но только в том случае, когда такая критика является удобным способом объяснения самих теорий. Главная цель этой книги - не защищать эти теории, а исследовать, какой была бы структура реальности, если бы эти теории оказались истинными.
Благодарности
Развитию идей, описанных в этой книге, в значительной степени способствовали беседы с Брайсом ДеВиттом, Артуром Экертом, Майклом Локвудом, Энрико Родриго, Деннисом Сиамой, Фрэнком Типлером, Джоном Уилером и Колей Вулфом.
Я выражаю благодарность своим друзьям и коллегам Рут Чанг, Артуру Экерту, Дэвиду Джонсон-Дэвису, Майклу Локвуду, Энрико Родриго и Коле Вулфу, своей маме Тикве Дойч и своим издателям Кэролайн Найт и Рави Мирчандани (издательство Penguin Books) и Джону Вудраффу, и особенно Саре Лоренс за внимательное и критичное чтение первых черновиков этой книги, а также за множество предложенных ими исправлений и улучшений. Также я признателен всем, кто читал и комментировал части рукописи, включая Харви Брауна, Стива Грэхема, Росселлу Лупаччини, Свейна Олава Нюберга, Оливера и Гарриет Стримпел, а в особенности Ричарда Докинза и Фрэнка Типлера.
1. Теория Всего
Помню, когда я был ещё ребёнком, мне говорили, что в древние времена очень образованный человек мог знать всё, что было известно. Кроме того, мне говорили, что в наше время известно так много, что ни один человек даже за всю свою жизнь не в состоянии изучить больше крошечной частички этого знания. Последнее удивляло и разочаровывало меня. Я просто отказывался в это поверить. Вместе с тем я не знал, как оправдать своё неверие. Но такое положение вещей меня определённо не устраивало, и я завидовал древним учёным.
Не то чтобы я хотел заучить все факты, перечисленные в энциклопедиях мира: напротив, я ненавидел зубрёжку. Не таким способом я надеялся получить возможность узнать всё, что только было известно. Даже если бы мне сказали, что ежедневно появляется столько публикаций, сколько человек не сможет прочитать и за целую жизнь, или что науке известно 600 000 видов жуков, это не разочаровало бы меня. Я не горел желанием проследить за полётом каждого воробья. Более того, я никогда не считал, что древний учёный, который, как предполагалось, знал всё, что было известно, стал бы занимать себя чем-то подобным. Я иначе представлял себе то, что может считаться известным. Под "известным" я подразумевал понятое.
Сама мысль о том, что один человек в состоянии понять всё, что понято, может показаться фантастической, однако фантастики в ней куда меньше, чем в мысли о том, что один человек сможет запомнить все известные факты. К примеру, никто не сможет запомнить все известные результаты научных наблюдений даже в такой узкой области, как движения планет, но многие астрономы понимают эти движения настолько полно, насколько их можно понять. Это становится возможным, потому что понимание зависит не от знания множества фактов как таковых, а от наличия правильных концепций, объяснений и теорий. Одна сравнительно простая и понятная теория может охватить бесконечно много неудобоваримых фактов. Лучшей теорией планетарного движения является общая теория относительности Эйнштейна, которая в самом начале XX века вытеснила теории гравитации и движения Ньютона. Теория Эйнштейна в принципе предсказывает не только все движения планет, но и все остальные эффекты гравитации, и согласуется с нашими самыми точными измерениями. Дело в том, что, когда теория предсказывает что-либо "в принципе", это означает, что предсказание логически следует из теории, даже если на практике для получения некоторых таких предсказаний необходимо произвести больше вычислений, чем мы способны осуществить технически или физически в той вселенной, которую мы знаем.
Способность предсказывать или описывать что-либо, даже достаточно точно, совсем не равноценна пониманию этого. В физике предсказания и описания часто выражаются в виде математических формул. Допустим, я запомнил формулу, из которой при наличии времени и желания мог бы вычислить любое положение планет, которое когда-либо было записано в архивах астрономов. Что же я в этом случае выиграл бы по сравнению с непосредственным заучиванием архивов? Формулу проще запомнить, но ведь найти число в архивах может быть даже проще, чем вычислить его из формулы. Истинное преимущество формулы в том, что её можно использовать в бесконечном множестве случаев помимо архивных данных, например, для предсказания результатов будущих наблюдений. С помощью формулы можно также получить более точное историческое положение планет, потому что архивные данные содержат ошибки наблюдений. И всё же несмотря на то, что формула охватывает бесконечно больше фактов, чем архив наблюдений, знать её не значит понимать движения планет. Факты невозможно понять, попросту собрав их в формулу, так же как нельзя понять их, просто записав или запомнив. Факты можно понять только после объяснения. К счастью, наши лучшие теории наряду с точными предсказаниями содержат глубокие объяснения. Например, общая теория относительности объясняет гравитацию на основе новой четырёхмерной геометрии искривлённых пространства и времени. Она точно объясняет, каким образом эта геометрия воздействует на материю и подвергается воздействию материи. В этом объяснении и заключается полное содержание теории; а предсказания движений планет - это всего лишь некоторые следствия, выводимые из этого объяснения.
Общая теория относительности так важна не потому, что она может чуть более точно предсказать движение планет, чем теория Ньютона, а потому, что она открывает и объясняет такие аспекты действительности, о которых ранее не подозревали - например, искривление пространства и времени. Это типично для научного объяснения. Научные теории объясняют объекты и явления в нашей жизни, опираясь на лежащую в их основе фундаментальную реальность, которую мы не воспринимаем непосредственно. Но способность теории объяснить то, что мы ощущаем, - не самое ценное её качество. Самое ценное заключается в том, что она объясняет саму структуру реальности. Как мы увидим, одно из самых ценных, значимых и полезных качеств человеческой мысли - её способность открывать и объяснять структуру реальности.
Однако некоторые философы, и даже учёные, недооценивают роль объяснения в науке. Для них основная цель научной теории заключается не в объяснении чего-либо, а в предсказании результатов экспериментов: всё содержание теории заключено в формуле предсказания. Они считают, что годится любое непротиворечивое объяснение, которое теория может дать своим предсказаниям, равно как и отсутствие объяснения, - до тех пор, пока её предсказания верны. Такой взгляд называется инструментализмом (поскольку в этом случае теория - всего лишь "инструмент" для предсказаний). Саму мысль о том, что наука может позволить нам понять скрытую реальность, лежащую в основе наших наблюдений, инструменталисты считают ложной и тщеславной. Они не понимают, каким образом то, о чём говорит научная теория помимо предсказания результатов экспериментов, может быть чем-то бо́льшим, чем пустые слова. В частности, объяснения они считают вспомогательными психологическими приспособлениями - чем-то вроде художественных элементов, включаемых в теории, чтобы сделать их занимательнее и облегчить запоминание. Лауреат Нобелевской премии, физик Стивен Вайнберг, явно говорил с позиций инструментализма, сделав следующий невероятный комментарий к объяснению гравитации Эйнштейном:
"Важно иметь возможность сделать предсказания относительно изображений на фотопластинках астрономов, частот спектральных линий и т. п., а то, припишем ли мы эти прогнозы физическому воздействию гравитационных полей на движение планет и фотонов [как это было в физике до Эйнштейна] или искривлению пространства и времени, просто не имеет значения" (Gravitation and Cosmology, p. 147).
Вайнберг и другие инструменталисты ошибаются. То, что мы приписываем изображениям на астрономических фотопластинках, имеет значение, и не только для физиков-теоретиков вроде меня, у которых мотивацией для написания формул и изучения теорий как раз и является лучше понять мир. (Я уверен, что эта мотивация присуща и Вайнбергу: вряд ли его стимулирует одно лишь желание предсказывать изображения и спектры!) Дело в том, что даже для чисто практического применения прежде всего важна объяснительная сила теории, а уж потом, в качестве дополнения, - её предсказательные возможности. Если это вас удивляет, представьте, что на земле появился инопланетный учёный и преподнёс нам ультравысокотехнологичный "оракул", который может предсказать результат любого эксперимента, но без каких-либо объяснений. Если верить инструменталистам, то как только мы получим этот оракул, или предсказатель, наши научные теории нам будут нужны разве что для развлечения. Но так ли это? Каким образом оракул можно было бы использовать практически? В некотором смысле он содержал бы знания, необходимые для того, чтобы построить, скажем, межзвёздный корабль. Но как именно он бы пригодился нам при строительстве такого корабля, или при создании другого подобного предсказателя, или даже при усовершенствовании мышеловки? Оракул всего лишь предсказывает результаты экспериментов. Следовательно, чтобы вообще использовать его, нам сначала нужно знать, о каких экспериментах его можно спрашивать. Если бы мы дали предсказателю проект космического корабля и информацию о предполагаемом испытательном полёте, он мог бы сказать нам, как поведёт себя корабль во время этого полёта. Но спроектировать космический корабль предсказатель не смог бы. И даже если бы он сообщил нам, что спроектированный нами космический корабль взорвётся при запуске, он не смог бы сказать нам, как предотвратить этот взрыв. Эту проблему снова пришлось бы решать нам. А прежде чем её решить, прежде чем приступить хоть к какому-то усовершенствованию конструкции, нам пришлось бы понять, кроме всего прочего, принцип работы космического корабля. И только тогда у нас появилась бы возможность узнать, почему он может взорваться при запуске. Предсказание - пусть даже самое совершенное, универсальное предсказание - не способно заменить объяснение.
Сходным образом и в научных исследованиях оракул не может дать нам ни одной новой теории. Только в том случае, если у нас уже есть теория и мы придумали эксперимент для её проверки, можно было бы спросить его, что произойдёт, если подвергнуть эту теорию данному испытанию. Таким образом, предсказатель заменил бы вовсе не теории - он заменил бы эксперименты. Он избавил бы нас от затрат на испытательные лаборатории и ускорители частиц. Вместо того чтобы строить опытные образцы космических кораблей и рисковать жизнью лётчиков-испытателей, все испытания мы могли бы проводить на земле, посадив лётчиков в пилотажные тренажёры, поведение которых определялось бы предсказаниями оракула.
Предсказатель мог бы быть весьма полезен во многих ситуациях, но его полезность всегда будет зависеть от способности людей решать научные проблемы точно так же, как они вынуждены делать это сейчас, а именно - изобретая объяснительные теории. Он даже не может заменить все эксперименты, поскольку на практике его способность предсказать результат какого-то частного эксперимента зависит от того, что проще: достаточно точно описать этот эксперимент, чтобы оракул дал полезный ответ, или провести эксперимент в действительности. Таким образом, для связи с предсказателем нужен своего рода "пользовательский интерфейс". Возможно, описание эксперимента придётся вводить на каком-то стандартном языке, причём одни эксперименты было бы труднее описать, чем другие. На практике описание многих экспериментов оказалось бы слишком сложным для ввода. Таким образом, предсказатель имел бы те же основные достоинства и недостатки, что и любой другой источник экспериментальных данных, и был бы полезен только в тех случаях, когда обращение к нему оказывалось бы удобнее, чем к другим источникам.
Можно посмотреть на ситуацию и другим способом: такой оракул уже существует рядом с нами, и это - физический мир. Он сообщает нам результат любого возможного эксперимента, если мы спрашиваем его на правильном языке (т. е. если мы проводим эксперимент), хотя в некоторых случаях нам не очень удобно "вводить описание эксперимента" в требуемой форме (т. е. создавать некий прибор и управлять им). И он тоже не даёт никаких объяснений.