Максвелловская научная революция - Ринат Нугаев 12 стр.


Среди возможных причин, побудивших Максвелла ввести ток смещения, в учебно-методической литературе до сих пор (вслед за Хевисайдом) обсуждается симметрия уравнений (М-1) по векторам E и H. Если j = 0, то эти уравнения переходят друг в друга при замене E→-H, HE. Этот вопрос подробно рассматривался в статье Борка (1968), справедливо отметившего, что ни текст максвелловских работ [I] – [IV], ни другие его публикации не дают никаких оснований утверждать, что ток смещения введен для придания уравнениям указанной симметрии. Представляется невероятным, что Максвелл, введя ток смещения по соображениям симметрии, ни разу не обратил внимание читателя на эту симметрию.

В итоге, наиболее важный результат предложенной Максвеллом системы уравнений состоял в "упрочении возможности того, что электромагнитные волны могут распространяться со скоростью, которая может быть подсчитана при помощи результатов чисто электрических измерений" (Sengupta & Sarkar, 2003,p. 16). Важно подчеркнуть, что ни в одной из своих работ Максвелл ничего не написал ни о возможности генерации света, ни о том, что могут существовать другие, несветовые электромагнитные волны подобные радиоволнам или рентгеновскому излучению.

В итоге ни о каком окончательном объединении электричества, магнетизма и оптики в 1861 г. не приходилось и говорить. Можно было уверенно заявлять лишь о начале согласования – взаимопроникновения френелевской оптики, фарадеевской концепции поля и ампер-веберовской электродинамики друг в друга, ставшем возможным за счет конструирования системы теоретических объектов из базисных объектов всех трех упомянутых программ. Представляется, что именно это и имел в виду Генрих Герц, когда в докладе на 62 съезде германской ассоциации содействия развитию естественных наук и медицины в Гейдельберге в 1889 г. отмечал, что именно Максвелл был тем "человеком, который смог соединить эти столь удаленные друг от друга предположения таким образом, что они стали взаимно поддерживать друг друга" (Hertz, 1889, p. 318).

Еще Уиттекер (1910) отмечал, что самым заметным недостатком представленной Максвеллом версии электромагнитной теории света было отсутствие объяснения явлений отражения и преломления света.

И сам Максвелл не очень доверял своим уравнениям в случаях высокочастотных колебаний в материальных телах. В диэлектриках, например, эти уравнения не объясняли явления оптической дисперсии и давали соотношение между показателем преломления света и индуктивностью, которое выполнялось только в первом приближении. В проводниках уравнения Максвелла предсказывали гораздо большее поглощение света, чем наблюдалось на самом деле (золотые листья). В этих случаях Максвелл заключал, что "наши теории структуры тел должны быть улучшены прежде чем мы можем вывести их оптические свойства из их электрических свойств".

Ток смещения сыграл лишь роль спускового крючка, запустившего механизм объединения оптики и теории электромагнетизма, "существенного параметра объединения", по терминологии М. Моррисон, или "гибридного объекта" по нашей терминологии. Несмотря на то, что в последующих стадиях развертывания теории эфир был отброшен, ток смещения остался как звено, объединявшее оптику и теорию электромагнетизма. Правда, статус его после инкорпорирования в лагранжеву систему значительно изменился.

Проникновение электромагнетизма в оптику выразилось в нахождении связи констант, полученных Вебером и Кольраушем, со скоростью света. Обратное проникновение оптики в электромагнетизм выразилось как в предсказании радиоволн, так и в связанных с ними эффектах интерференции и диффракции. Как отмечал в статье "Эфир" Максвелл, "мы поэтому и заключаем, что свет – это не вещество, а процесс, имеющий место в веществе" (Maxwell [1877], 1890, p. 765).

Вот как сам Максвелл описывает суть своего открытия в письма Майклу Фарадею от 19 октября 1861 г.

"Концепция, на которую я наткнулся, привела меня, будучи разработанной математически, к некоторым очень интересным результатам, способным проверить на опыте мою теорию, и показывающим численные соотношения между оптическими, электрическими и электромагнитными явлениями, которые я вскоре надеюсь более основательно подтвердить…

Моя теория эластичных сил состоит в том, что они вызываются в изоляторах небольшими электрическими смещениями; последние деформируют определенные малые порции вещества так, что сопротивление этому процессу со стороны эластичности вещества и создает электродвижущую силу…

Я предполагаю, что эластичность этой сферы воздействует на окружающую ее электрическую материю, и толкает ее вниз. Из результатов исследований Кольрауша и Вебера, относящихся к численному отношению между статическими и магнитными эффектами, я определил эластичность вещества в воздухе, и, предположив, что в светоносном эфире она та же самая, я определил скорость распространения поперечных колебаний.

Результат – 193,088 миль в секунду (как это следует из электрических и магнитных экспериментов). Определенная Физо из прямого эксперимента скорость света = 193,118 миль в секунду.

Это – не просто численное совпадение. Я разработал эти формулы в деревне прежде, чем увидел веберовские числовые результаты, которые даны в миллиметрах, и я полагаю, что мы имеем весомую причину, вне зависимости от того, является ли моя теория фактом или нет, верить в то, что светоносный и электромагнитный эфиры – это одно и то же" (цит. по: Campbell & Garnett, 1882, pp. 748-749).

Дальнейший прогресс должен был состоять – и не мог не состоять – в доказательстве большей всеобщности полученных результатов и в попытке уйти от сконструированных искусственных моделей. Именно это Максвелл и попытался сделать в течение трех лет, прошедших после публикации [II].

В письме своему старому кембриджскому товарищу (Henry R.Droop, декабрь 1861), написанному как раз перед публикацией знаменитой третьей части статьи о молекулярных вихрях, Максвелл отмечал, что "я сейчас пытаюсь найти точную математическую форму для всего того, что известно об электромагнетизме, без помощи гипотезы" (цит. по Siegel, 2000, p. 145).

И в 1864 Максвелл уже представляет усовершенствованный вариант статьи [II], который на этот раз уже не зависел от модели молекулярных вихрей. Хотя на словах он не отказывался от самой модели, он старался избегать, насколько это было возможно, каких-либо детализаций устройства и взаимосвязи молекулярных вихрей – начиная с [III] и заканчивая "Трактатом об электричестве и магнетизме". Правда, что касается теоретического воспроизведения "эффекта Фарадея", он в молекулярном механизме все-таки нуждался, хотя и вынужден был делать следующую оговорку: "теория, предложенная на предыдущих страницах, с очевидностью носит временный характер, основываясь на неподтвержденных гипотезах как о природе молекулярных вихрей, так и о способах, при помощи которых они связаны со смещением среды" (цит. по: Siegel, 2000, p. 157).

Или, как сообщал Питеру Тэту сам Максвелл в письме от 23 декабря 1867, "теория вихрей… сконструирована так, чтобы показать, что явления таковы, как может быть объяснено при помощи механизма. Природа этого механизма относится к истинному механизму так же, как планетарий относится к самой солнечной системе" (цит. по: Siegel, 2000, p. 200).

Тем самым Максвелл справедливо охарактеризовал весь аппарат молекулярных вихрей как демонстрационную – или "рабочую – модель" (на языке "Трактата об электричестве и электромагнетизме").

Резюме третьей главы

Проведенных в статье 1856 г. исследований оказалось недостаточно для того, чтобы охватить всю область известных электромагнитных явлений, и в 1861 г. Максвелл начинает публикацию в четырех частях в журнале "Philosophical Magazine" второй статьи, посвященной проблемам электричества и магнетизма – "О физических силовых линиях". Название ее первого раздела говорит само за себя: "Применение теории молекулярных вихрей к явлениям магнетизма". Его цель – переполучить результаты теорий Вебера и Неймана, исходя на этот раз из новой, "вихревой" механической модели несжимаемой жидкости.

Но во второй части статьи 1861 г., которая была озаглавлена "Применение теории магнитных вихрей к электрическим токам", Максвелл подходит к тяжелейшей проблеме своей исследовательской программы – как "физически связаны эти вихри с электрическими токами". В этом пункте он осознает ограниченность чисто механической модели для описания взаимосвязи явлений электричества и магнетизма и вынужден напрямую заимствовать элементы теории действия на расстоянии. Максвелл вынужден приступить к конструированию гибридных теоретических моделей, сконструированных из базисных объектов и сочетающих черты принципиально разных, чужеродных теоретических схем.

Важность введения гибридной модели Максвеллом трудно переоценить. Оно было равносильно признанию в том, что механические объяснения принципиально неполны и должны быть дополнены другими. И электрический заряд, и масса не могут быть полностью объяснены механически.

Но полученные результаты были, конечно, недостаточными для того, чтобы серьезно конкурировать с теорией действия на расстоянии, в частности, не хватало теоретического воспроизведения основного закона электростатики – закона Кулона. Именно это и было сделано в знаменитой третьей части работы 1861 г., которая называлась "Применение теории молекулярных вихрей к статическому электричеству". Оказалось, что если мы, в процессе встречи френелевской оптики и теории электромагнетизма перенесем одни свойства эфира из оптики в теорию электромагнетизма, то мы избавимся по меньшей мере от одного предположения ad hoc. Распространение теории молекулярных вихрей на явления электростатики оказалось возможным именно из-за учета упругости вихрей, которые делают магнито – электрическую субстанцию способной поддерживать волны упругости. В итоге Максвелл не объяснил – откуда берутся, как генерируются электромагнитные волны. Он лишь показал, что его эластичная вихревая среда способна распространять электромагнитные волны со скоростью, которую можно подсчитать из электромагнитных констант и которая весьма близка к скорости света.

Введение тока смещения было следствием попыток Максвелла связать уравнения, относящиеся к электрическому току, с уравнениями электростатики, что потребовало модификации закона Ампера за счет введения нового члена, описывающего упругость вещества, из которого состоят вихри. В итоге импульс, побудивший Максвелла ввести ток смещения, все-таки лежал в попытках объединить все основные эмпирические законы, относящиеся к области явлений электричества и магнетизма, а также оптики, откуда свойство упругости эфира и было перенесено.

Максвелл положил начало не столько объединению электродинамики и теории магнетизма, сколько объединению британской и континентальной традиций – полевой и корпускулярной традиций рассмотрения электромагнитного взаимодействия.

Наиболее важное следствие предложенной Максвеллом системы уравнений состояло в "упрочении возможности того, что электромагнитные волны могут распространяться со скоростью, которая может быть подсчитана при помощи результатов чисто электрических измерений". Ни в одной из своих работ Максвелл ничего не написал ни о возможности генерации света, ни о том, что могут существовать другие, несветовые электромагнитные волны подобные радиоволнам или рентгеновскому излучению.

Ни о каком окончательном объединении электричества, магнетизма и оптики в 1861 г. не приходилось и говорить. Можно было уверенно заявлять лишь о начале согласования – взаимопроникновения – френелевской оптики, фарадеевской концепции поля и ампер-веберовской электродинамики друг в друга, ставшем возможным за счет конструирования системы теоретических объектов из базисных объектов всех трех упомянутых программ.

ГЛАВА ЧЕТВЕРТАЯ
ЗАВЕРШАЮЩИЕ ЭТАПЫ РЕАЛИЗАЦИИ СИНТЕТИЧЕСКОЙ ПРОГРАММЫ МАКСВЕЛЛА

Годы, последовавшие за публикацией статьи [II], отмечены следующим парадоксом. Многие современники Максвелла (и особенно его друг Уильям Томсон) надеялись на то, что дальнейшие шаги в разработке электродинамики будут связаны с совершенствованием вихревой модели, которую он с такой изобретательностью изложил на страницах "Philosophical Journal" и с тем, что он сконструирует, наконец, "истинный механизм" генерации и распространения электромагнитного излучения. Но их ждало полнейшее разочарование. (Это еще раз подтверждает справедливость больцмановского замечания о том, что большинство физиков-современников Максвелла просто не поняли сути его – кантианской – синтетической программы).

Из многократных заявлений Максвелла следует, что он предполагал, что истинные механизмы действия природных сил находятся далеко за пределами, заданными возможностями нашего понимания. Эти механизмы остаются в секрете, также как устройство колокольни в известном максвелловском примере, когда мы слышим звон и знаем откуда он, но не знаем как он производится, каким образом связаны между собой веревки, идущие от звонарей к колоколам.

В работе 1864 г. "Динамическая теория электромагнитного поля" (III]) Максвелл ставит своей целью вывести уравнения электромагнитного поля не из искусственно сконструированной механической модели, а из принципа наименьшего действия, из лагранжиана, специально сконструированного для электромагнитного поля. Но для этого лагранжиан сначала надо правильно построить, что Максвелл и делает, исходя из определенных "очевидных" умозрительных принципов.

То, насколько обычно сдержанный в оценках, высоко ставил Максвелл эту работу, видно из следующей приписки, сделанной им в письме к одному из своих кузенов: "у меня в полном разгаре работа над статьей с электромагнитной теорией света, которую, до тех пор пока меня не убедят в обратном, я буду считать великим оружием (great guns)" (цит. по: Mahon, 2002, p. 123).

Статья, признанная лучшей из электродинамических работ Максвелла по ясности и компактности изложения, начинается с утверждения о том, что явления света и тепла дают нам основание предполагать, что имеется некая "эфирная среда, заполняющая все пространство и пронизывающая все тела", которая обладает способностью быть приводимой в движение, передавать это движение и сообщать это движение плотной материи. Для этого части этой среды должны быть способны к определенному роду упругого смещения, поскольку передача от одного места к другому требует времени. Поэтому данная среда обладает способностью получать и сохранять два вида энергии – "актуальную" энергию, зависящую от движения ее частей, и "потенциальную" энергию – работу, которую среда выполняет в силу своей упругости. Распространение колебаний, по Максвеллу, состоит в преобразовании одной из этих форм энергии в другую попеременно.

Фундаментом максвелловых полевых уравнений является на этот раз лагранжева механика вместе с "экспериментальными фактами трех типов" (индукция токов, распределение магнитной интенсивности в соответствии с изменениями потенциала и индукция статического электричества).

"Несмотря на то, что Максвелл провозгласил в качестве основного метода получения своих уравнений дедукцию их из экспериментальных фактов, его вывод все еще требовал постулирования тока смещения, что не могло быть ни подтверждено экспериментами, ни выведено из них" (Моррисон, 2000, p. 85).

Общие уравнения в дальнейшем применяются к случаю магнитного возмущения, и демонстрируется, что единственные возмущения, которые могут распространяться таким образом, – это возмущения, поперечные к направлению распространения. Максвелл специально отмечает, что концепция распространения поперечных магнитных возмущений с исключением продольных разрабатывалась Фарадеем в его "Мыслях о лучевых вибрациях" (Phil.Mag., май 1846).

"Эта теория света в том виде, в каком она предложена им, является такой же по существу, как и та, которую я развиваю в настоящем докладе, за исключением того, что в 1846 г. не имелось данных для расчета скорости распространения" (Максвелл, [1864], С. 263).

Трудно переоценить это максвелловское замечание. Последний здесь ясно указывает на источник своей идеи о том, что свет – это электромагнитные колебания. Это – фарадеевская работа 1846 г. (и, возможно, личные контакты с Фарадеем, имевшие место в 1861). Максвелл добавил к ней свою собственную гипотезу о том, что скорость распространения электромагнитных колебаний равна скорости света – самое простое из возможных соотношений между скоростью света и скоростью электромагнитных возмущений.

Важно также то, что и в [III] Максвелл вынужден еще и еще раз обратиться к принципиальному моменту, относящемуся к постоянно используемым механическим аналогиям.

Назад Дальше