ЭПИЛОГ
МАКСВЕЛЛ И ЭЙНШТЕЙН
Через тридцать лет после максвелловского "Трактата об Электричестве и Магнетизме" эстафету подхватил Альберт Эйнштейн. В опубликованной им в 1905 г. статье "К электродинамике движущихся тел" была предложена специальная теория относительности (СТО). Она основывалась на т.н. "принципе относительности", утверждавшем, что все законы природы должны выглядеть одинаково во всех инерциальных системах отсчета. Из этой теории следовало, по выражению Ричарда Фейнмана, что "магнетизм и электричество – не независимые вещи, они всегда должны быть взяты в совокупности как одно полное электромагнитное поле. Хотя в статическом случае уравнение Максвелла разделяется на две отдельные пары: одна пара для электричества и одна для магнетизма, без видимой связи между обеими полями, тем не менее в самой природе существует очень глубокая взаимосвязь между ними, возникающая из принципа относительности" (Фейнман, Лейтон, Сэндс, 1966, т. 5, С. 266).
В частности, если мы рассмотрим относительное движение заряженной частицы и проволоки, мы получаем один и тот же результат, независимо от того, рассматриваем ли мы движение летящей рядом с проволокой частицы в системе покоя проволоки или в системе покоя частицы. Но в первом случае сила является только "магнитной", а во втором – чисто "электрической".
В статье "К электродинамике движущихся тел" Эйнштейн показал, что электрические и магнитные силы составляют части одного и того же физического явления – электромагнитного взаимодействия. Разделение этого взаимодействия на электрическую и магнитную компоненты носит во многом условный характер и в большой степени зависит от системы отсчета, в которой мы описываем взаимодействие. В этом смысле "явление магнетизма – это чисто релятивистский эффект" (Фейнман).
Например, в плоской волне, движущейся со скоростью света в пустом пространстве, происходит постоянная перекачка ее магнитной энергии в электрическую и обратно.
Но проблема "дополнительности" электрического и магнитного полей оказалась на самом деле связанной с другой, более глубокой проблемой – "дополнительности" полевого и корпускулярного описания электромагнитных явлений.
В самом деле, статья 1905 г. по специальной теории относительности (СТО) начинается Эйнштейном со знаменитого описания "глубокой асимметрии" в объяснении явления электромагнитной индукции. Опыт говорит нам о том, что индукционный ток, вызванный в проводнике движением магнита, зависит только от относительной скорости движения проводника и магнита. Однако теория Максвелла-Лоренца дает нам два принципиально разных описания этого эффекта, приводящим каким-то чудесным образом к одному и тому же результату. Если магнит движется, а проводник покоится, ток в проводнике создается электрическим полем с определенной плотностью энергии. Во втором случае, когда магнит покоится, а проводник движется, никакого электрического поля нет, а индукционный ток приписывается электродвижущей силе, энергия поля которой равна нулю.
Для понимания причин создания СТО принципиально важно то, что Эйнштейн не был ни в коем случае первым, кто заметил эту асимметрию в теоретическом воспроизведении явления индукции. В 1885 г. об этом писал такой выдающийся последователь Максвелла, как Оливер Хевисайд, в том же году – телеграфный инженер Толвер Престон, в 1894 – Герман Феппль, ну а в 1898 – сам Вильгельм Вин (подробнее см.: Darrigol, 2001, p. 377). Поэтому принципиально важный вопрос – не в том, что Эйнштейн заметил эту асимметрию, а почему именно он оказался к ней особо чувствительным?
Мы, например, точно знаем по эйнштейновской переписке, что еще в 1901 г. он работал над "капитальным трудом" по электродинамике движущихся тел, но почему он оставил этот труд и вернулся к нему только в 1905 г.? Что произошло в этом промежутке, и почему Эйнштейн, бывший сначала сторонником эфира, от него в 1905 г. отказался?
– Принцип относительности? Относительности пространства и времени и их свойств? – Но о них писал и Анри Пуанкаре, что не помешало последнему сохранить концепцию эфира – как среды, необходимой для распространения электромагнитных колебаний?
Скажем, в 1902 г. Анри Пуанкаре отмечал: "Абсолютного времени не существует. Заявление о том, что две длительности равны, – это утверждение, которое само по себе не имеет смысла, и которое может получить последний только по соглашению. Непосредственная интуиция не говорит нам ничего не только о равенстве двух длительностей, но даже об одновременности двух событий, имеющих место в двух разных местах; я объяснил это в статье, названной "Измерение времени"" (цит. по: Darrigol, 2001, p. 347).
Ключ к ответу на поставленные выше вопросы – в других работах Эйнштейна (подробнее см.: Нугаев, 2010). Тот же Альберт Эйнштейн раскрыл в том же 1905 г., но в другой, опубликованной в том же журнале "Annalen der Physik" на три месяца раньше работы по СТО статье "Об одной эвристической гипотезе, касающейся явлений распространения и превращения света" другую, более глубокую асимметрию: "Существует глубокое различие (курсив мой – Р.М.Н.) между теоретическими представлениями физиков о газах и прочих весомых телах и максвелловской теорией электромагнитных процессов в так называемом пустом пространстве". (Эйнштейн, [1905], 1966, С. 322).
В чем состоит это различие? – В том, что "хотя мы полагаем, что состояние тела полностью определяется положениями и скоростями хотя и очень большого, но все же конечного числа атомов и электронов, для определения состояния электромагнитного поля в пространстве используются непрерывные функции, так что конечное число переменных недостаточно для определения состояния электромагнитного поля в пространстве" (там же).
К чему это различие может привести? – К тому, что "теория света, оперирующая непрерывными пространственными функциями, приведет, будучи примененной к явлениям возникновения и превращения света, к противоречиям с опытом (курсив мой – Р.М.Н.").
Отсюда следует, что "монохроматическое излучение малой плотности (в области применимости закона излучения Вина) в смысле калорической теории ведет себя так, как если бы оно состояло из независимых квантов энергии величиной Rβv/N… Но если монохроматическое излучение (достаточно малой плотности) в смысле зависимости энтропии от объема ведет себя как дискретное вещество, состоящее из квантов энергии Rβv/N, напрашивается вопрос: а не являются ли и законы возникновения и прекращения света такими, как будто свет состоит из подобных же квантов энергии" (Эйнштейн, [1905],1966, С. 236).
Через четыре года, в обзорном докладе "О развитии наших взглядов на сущность и структуру излучения" (Зальцбург, 1909), представлявшем практически первую серьезную попытку проанализировать все свои работы в совокупности, Эйнштейн констатирует, что "существует обширная группа фактов в области излучения, показывающих, что свет обладает рядом фундаментальных свойств, которые можно понять с точки зрения теории истечения Ньютона намного лучше, чем с точки зрения волновой теории. Поэтому я считаю, что следующая фаза развития теоретической физики даст нам теорию света, которая будет в каком-то смысле слиянием волновой теории света с теорией истечения (курсив мой. – Р.М.Н.)" (Эйнштейн [1909], 1966, С. 183).
Именно к основным положениям лоренцевской дуалистической программы относятся следующие проницательные и точные слова Альберта Эйнштейна: "Установленные с тех пор [т.е. со времен Максвелла – РМН] и добившиеся успеха физические теории являются скорее компромиссом между обеими программами. Именно из-за своего компромиссного характера эти системы носили на себе печать недолговечности и логического несовершенства, несмотря на то, что в отдельности каждая из них добивалась значительных успехов.
В первую очередь следует назвать созданную Лоренцом электронную теорию, в которой поле и электрические частицы одновременно выступают в качестве равноправных элементов" (Эйнштейн, [1931], 1968, С. 246).
Таким образом, дуализм между корпускулярным и волновым описаниями, лежащий в основе максвелловской теории, был адекватно разрешен только в первой половине XXв. совместными усилиями создателей квантовой теории. Но это – уже другая история.
ЗАКЛЮЧЕНИЕ
Итак, мы рассмотрели генезис и становление максвелловской электродинамической научно-исследовательской программы. Какие же выводы для философии и методологии науки мы можем теперь сделать? В частности, что нового дает проведенное исследование для ответа на следующие – особо значимые для "унификационистов" (unificationists) – вопросы (Kitcher, 1981; Glymour,1980; Friedman, 1983; Watkins,1984;Wayne, 2002)?
− Чем отличается действительное объединение нескольких теорий от их простой конъюнкции?
− Почему объединение теорий является эпистемологическим достоинством, а не недостатком?
− Является ли объединение теорий шагом на пути к более глубокому пониманию реальности?
− Действительно ли природа по сути своей настолько проста, чтобы допускать создание объединяющих различные процессы теорий?
− Почему мы так верим в то, что чем в большей степени данная теория объединяет другие теории, тем более она истинна?
Здравый смысл требует признать, что ответить на все поставленные вопросы сразу, в одном исследовании, чрезвычайно трудно и может быть невозможно. Тем не менее мы можем попытаться более четко их поставить, а иногда даже приблизиться к более определенным ответам на них.
Тот же здравый смысл настаивает на том, что если мы не верим в существование Высшего Разума, создавшего на основе простых и единых законов все сущее, включающее не только природные объекты, но и нас самих, то ниоткуда не следует ни то, что такие законы, описывающие глубинные и всеобщие свойства окружающих объектов, действительно существуют.
Равно как и то, что чем более общей является данная научная теория, тем ближе она к истине. В частности, ниоткуда не следует, что Holy Grail современной физики – хокинговская Теория Всего на Свете (Theory of Everything), с единой точки зрения описывающая все четыре фундаментальных взаимодействия, действительно должна существовать. Несмотря на провозглашенные за последнее время успехи в объединении различных фундаментальных взаимодействий – от электрослабой теории Вайнберга – Салама до обнаружения хиггсовского бозона или частицы, "похожей" на него, – наверное, не стоит спешить со сверхоптимистичным выводом о том, что мы к этой теории все более и более приближаемся.
Тем не менее, из всего сказанного выше еще не следует, что мы должны встать на точку зрения "антиунификационистов" (таких как Dupre, Galison и Stump) и отрицать существование как универсальных принципов объединения, так и значимость самого методологического регулятива, с этим процессом связанного (подробнее см. Mamchur, 2010).
В самом деле, как отмечал еще Джеймс Максвелл, "в природе все процессы и явления тесно связаны между собой", поэтому мы можем ожидать, что эти связи и отношения должны отражаться и на содержаниях наших научных теорий. Это означает, что, несмотря на то, что мы не можем требовать от наших теорий приближения к некоему идеалу всеохватывающей единой теории, мы все-таки можем ожидать, в процессе увеличения эмпирического содержания нашего знания, роста согласованности различных теорий между собой. В этом, с нашей точки зрения, и состоит когерентная концепция научной истины, согласующаяся с т.н. "внутренним реализмом" (подробнее см.: Нугаев, 2012). Тогда вполне разумное утверждение о существовании научного прогресса должно состоять в требовании роста объективности встречающихся научных теорий, как это подробно описано самим Максвеллом в статье "Гельмгольц".
Рост объективности научного знания состоит в устранении следов "цементов", связывавших между собой разные части столкнувшихся друг с другом научных теорий, как это имело место, например, во времена Галилея и Ньютона, устранивших, по меткому выражению Максвелла, "следы птолемеевской паутины с неба". Эти "цементы" отражают произвол в выборе средств обобщения одного и того же множества "фактов" при помощи разнообразных теоретических языков. Но, по мере согласования встретившихся теорий, произвол в обобщении различных групп фактов все более и более уменьшается, теоретические языки все более и более взаимопереплетаются и проникают друг в друга, а объективность научного знания в целом – растет.
Хотелось бы еще раз подчеркнуть, что рост объективности научного знания совсем не обязательно должен быть связан с приближением к какому-то Конечному Пределу. Сравниваемые между собой научные картины мира Аристотеля, Ньютона, Эйнштейна, Бора и Виттена совсем не обязательно должны напоминать фотографии одного и того же объекта, сделанные со все увеличивающейся степенью точности. Скорее, они напоминают картины Руанского собора, сделанные импрессионистом Клодом Моне в разное время дня.
В попытке найти золотую середину между Сциллой контекстуализма и Харибдой общего философского анализа может оказаться полезным обращение к опыту социально-гуманитарных наук конца XIX в. Именно тогда, в споре между баденской (П. Наторп) и марбургской (В. Виндельбанд, Г. Коген) школами неокантианства по вопросу существования общих исторических закономерностей Макс Вебер предложил следующий разумный компромисС. Всеобщих законов общественного развития действительно не существует. Но это не означает того, что использовать это понятие бесполезно.
Это означает, что данные всеобщие законы отражают не действительно существующие связи процессов и явлений, а лишь особенности тех моделей, которые мы сконструировали для их описания. Законы-тенденции – это идеальные типы, которые мы конструируем, обобщая какие-то специфические casestudies всего лишь для того, чтобы сравнивать эти ситуации друг с другом. Идеальный тип – это шаблон, который мы вырабатываем для описания отклонения данной ситуации от идеально-типической. Поэтому мы не можем полностью согласиться с утверждением М. Моррисон о том, что "я надеюсь на то, что мое исследование раскроет способы, при помощи которых теоретическое объединение проявляет себя в различных измерениях и в различных контекстах. Это означает, что не существует "единого" подхода к единству – черта, придающая этому процессу иммунитет по отношению к общему анализу" (Morrison, 2000,p. 119).
В силу того, что дать единое, непротиворечивое и приемлемое для всех описание синтеза теорий чрезвычайно сложно (а может быть вообще невозможно), разумным представляется выход, подсказанный исследованиями Макса Вебера (см., например, Вебер, 1989). Надо выбрать проблемную ситуацию, относительно которой большинство экспертов уверено, что она представляет собой своеобразный образец синтеза теорий (первое, что приходит на ум – это, конечно, максвелловский синтез), тщательно исследовать ее, обобщить результаты в виде определенной идеальной модели синтеза и превратить ее особенности в своеобразный шаблон для сопоставления с другими предполагаемыми ситуациями объединения теорий. При помощи этого шаблона можно "замерять" степени отклонения других проблемных ситуаций от максвелловской. Можно также пытаться объяснять причины отклонения рассматриваемых проблемных ситуаций от максвелловского идеального типа за счет рассмотрения или "внешних" факторов, или факторов "внутренних", или их сочетания. Вполне возможно, что прогресс науки может быть связан с вытеснением "максвелловским" идеальным типом всех остальных. Почему бы и нет?
В чем же состоят основные особенности максвелловского синтеза, которые могут представлять интерес и для других случаев объединения?
(1) Хорошо известно, что основная цель, которую ставил перед собой Максвелл в период создания своей теории и которая была выдвинута всем предшествующим ходом развития науки, сводилась к поискам единого способа описания и объяснения различных аспектов электричества и магнетизма. При построении своей синтетической теории Максвелл, как правило, не обращался к экспериментальным данным, а использовал в качестве эмпирического материала теоретические знания предшествующего уровня (подробнее см.: Степин, 1976). Он использовал теоретические модели и законы электростатики (закон Кулона, закон Фарадея для электростатической индукции), магнитостатики и взаимодействия стационарных токов (закон Био-Савара, закон Кулона для магнитных полюсов, закон Ампера), электромагнитной индукции (закон Фарадея), постоянного тока (законы Ома, Джоуля – Ленца).
(2) Развитая (mature) теория Максвелла строилась на основе последовательного синтеза частных теоретических схем Кулона, Ампера и т.д., которые включались в состав теории в трансформированном виде и представали как выводимые из ее фундаментальной теоретической схемы (Степин, 2000). Но в основе твердого ядра максвелловской программы, целенаправлявшего теоретический поиск, лежали не механическая или электромагнитная картины мира (их скорее можно отнести к позитивной и негативной эвристикам этой программы), а учение об аналогиях, представлявшее собой кантовскую эпистемологию, рассмотренную через призму шотландского реализма.
Именно это обстоятельство позволило ему взглянуть на проблему синтеза оптики, электричества и магнетизма под принципиально новым углом и искать не онтологическую, субстанциональную основу электромагнитных взаимодействий, а математические выражения, описывающие взаимоотношения электрических и магнитных сил. У Максвелла электрическое и магнитное поля сохраняют свою относительную независимость друг от друга, не будучи сведены к одной и той же силе или субстанциональной основе. Уравнения Максвелла лишь описывают их взаимоотношения: если существует изменяющееся электрическое поле, существует и изменяющееся магнитное поле, и наоборот.
И все.
Максвелл действительно объединил бы электричество и магнетизм в том случае, когда он продемонстрировал бы, что и та, и другая силы не только качественно объясняются напряжениями и натяжениями одной и той же среды – эфира, – но и вывел бы аналитическое выражение, связывающее, скажем, магнитные и электрические характеристики электрона, константы ε и μ, как он это сделал для случая объединения оптики и электромагнетизма, когда он теоретически рассчитал скорость света через эти константы.
Или, говоря языком Уэвелла, Максвелл объединил бы электричество и магнетизм тогда, когда он обнаружил бы для случая электричества и магнетизма то же самое "совпадение индукций", которое он обнаружил для оптики и электромагнетизма. Вот тогда это совпадение индукций, в полном соответствии с уэвелловской методологией, могло бы быть объяснено за счет постулирования единой по своей "природе" силы, которая вызывает эти явления.