Максвелловская научная революция - Ринат Нугаев 8 стр.


"Вытачивание (grinding out) "подходящих идей" (appropriate conceptions), как их называет Уэвелл, – тяжелая работа. В конечном счете они все-таки появляются на свет божий, и после сталкивания их с фактами и с расхожими полу-переваренными теориями я рассчитываю придать им определенную форму, после чего я надеюсь узнать поболее об индуктивной философии, чем я знаю сейчас" (цит. по: Campbell & Garnett, 1890. p. 112).

Но откуда все же берутся "подходящие идеи"? – Кантовский принцип "активности познающего субъекта" (III) указывает направления поиска ответа на этот вопрос. Понятия – не пассивные копии вещей, а те (априорные) формы, в которых хаотическая лава ощущений и впечатлений отливается, приводится в порядок, приобретая сначала смутные очертания. Для понимания генезиса " подходящих идей" мы должны опереться на кантовский анализ роли математики в научном познании. Для нас важно то, что Кант рассматривал математику – ту область, которую рассматривали как самую стабильную и определенную из-за ее аналитичности – как "систему синтетических суждений априори". Поэтому "здесь должна сыграть свою роль интуиция, которая только и делает синтез возможным" (Кант, [1783], 2002, p. 64). Кантовский тезис об интуитивном характере математики означает сведение математики к тем объектам, которые конструируемы [Konstruierbar].

Пожалуй, самым близким современным приближением к кантовскому подходу является интуиционизм.

Последний признает только конечные объекты, а именно те объекты, которые могут быть конституированы. Думается, что Кант с энтузиазмом поддержал бы Людвига Виттгенштейна (творившего в кантианскойкьеркегоровской атмосфере Вены) – в том, что "математик не открывает, а изобретает". В силу того, что суть математики состоит в практике схватывания отношений между вещами, развитие математики в гораздо большей степени определяется прикладной математикой, или "играми", нежели развертыванием из определенных принципов.

Итак, первоначально "подходящие идеи" свободно изобретаются математиками. Сначала они туманны и неопределенны, но затем, в соответствии с традициями шотландского реализма, но не априоризма, эти сырые формы еще "обтачиваются" за счет сталкивания их как с опытными данными, так и со следствиями из других теорий для того, чтобы приобрести завершенность.

И здесь-то и начинаются принципиальные расхождения с кантовской (и уэвелловской) эпистемологией и начинается обращение к опыту шотландского реализма. "Подходящие идеи" должны быть сопоставлены с другими "подходящими идеями" (и в конечном счете с теми экспериментальными результатами, которые в них "вплавлены"). Задача теоретика состоит не только в том, чтобы ввести и отполировать (априорные) теоретические понятия, выражающие различные аспекты явлений, но и также в том, чтобы соединить эти понятия в синтезе.

Каким же должен быть этот синтез? – Его контуры и этапы намечены в другой философской работе Максвелла – статье "Герман Людвиг Фердинанд Гельмгольц", посвященной анализу творчества одного из наиболее близких по духу для Максвелла исследователей, наставнику Генриха Герца, человеку, много сделавшему для развития теории электромагнитного поля. Примечательно, что эта статья начинается с констатации того, что обычно научное знание растет за счет аккумуляции вокруг конечного числа отличающихся друг от друга центров. Но рано или поздно должно наступить такое время, когда два или более раздела знания уже больше не могут оставаться независимыми друг от друга, но должны "слиться в согласованное целое" (must be fused into a consistent whole). Но, несмотря на то, что ученые могут быть глубоко убеждены в необходимости подобного слияния, сама эта операция является одной из самых трудных.

"Ведь, хотя явления природы все согласованы друг с другом, мы должны иметь дело не только с ними, но и с гипотезами, которые были изобретены для систематизации этих явлений; и ниоткуда не следует, что из-за того, что одно множество наблюдателей выработало со всей искренностью для их упорядочения одну группу явлений, гипотезы, которые они сформировали, будут согласованы с теми, при помощи которых второе множество наблюдателей объясняли другое множество явлений. Каждая наука может показаться достаточно (tolerably) согласованной внутри самой себя, но прежде чем они смогут быть объединены в одно целое, каждая должна быть освобождена от известкового раствора, при помощи которого ее части были предварительно скреплены для согласования друг с другом" (Maxwell, 1890, p. 592).

Этот важнейший отрывок – не случайное для Максвелла обстоятельство; Максвелл неоднократно подчеркивал ценность третьего принципа своей методологии – "взаимооплодотворения разными науками друг друга" (III; подробнее см.: Harman, 2001, p. 4). Только те понятия должны "выжить" в процессе тщательного сопоставления с другими, которые способствуют объединению, взаимопроникновению различных встретившихся друг с другом теорий. С этим принципом неразрывно связан и четвертый максвелловский принцип – принцип "устранения остатков цемента" (IV), способствующий устранению тех понятий, которые препятствуют синтезу теорий.

Классический пример устранения "остатков цемента", который Максвелл приводил неоднократно (в частности, в статье "О действии на расстоянии"), – это создание ньютоновской теории тяготения, когда "прогресс науки состоял в освобождении от небесных механизмов, которыми поколения астрономов загромождали небеса, в смывании паутины (sweeping cobwebs off) с неба" (Maxwell, 1890, p. 315; см. также: Нугаев, 2012).

Отсюда – причины, приведшие к зарождению концепции "действия на расстоянии", созданной не самим Ньютоном, а лишь определенной группой его последователей во главе с д-ром Роджером Коттсом, написавшим предисловие к "Математическим началам натуральной философии Исаака Ньютона.

"Особенно важно то, что ньютоновский метод должен был быть распространен на всякую область науки, к которой он оказывался применимым, – что мы прежде всего должны исследовать силы, с которыми тела действуют друг на друга, до того, как мы попытаемся объяснить как эти силы передаются. Никто лучше не подходил для решения первой задачи, чем те, которые считали вторую часть совершенно несущественной" (Maxwell, 1890, p. 317).

В случае создания максвелловской электродинамики примером понятия, которое устраняется из-за того, что мешает дальнейшему объединению, является понятие "несжимаемой жидкости". Хотя первоначально оно и способствовало получению части уравнений Максвелла, в дальнейшем оно стало тормозить процесс получения всей системы уравнений. Поэтому Максвелл вынужден был отказаться от понятия "несжимаемая жидкость" и обратиться к понятию "вихря в эфире".

Резюме первой главы

Непосредственными предшественниками Максвелла в деле создания теории электромагнетизма были Ганс Христиан Эрстед, Андре-Мари Ампер, Майкл Фарадей и Уильям Томсон. Но мировоззрение Максвелла резко отличалось от взглядов этих исследователей несопоставимо более высоким уровнем философской культуры, подчеркнутой ориентацией на взгляды Канта критического периода. Несомненно, что его источником были лекции по философии, читавшиеся в эдинбургском университете ведущим шотландским философом Уильямом Гамильтоном, одним из представителей шотландской философии "здравого смысла", наследником традиции Томаса Рида и Дугалда Стюарта. Отрицая юмовский скептицизм, Гамильтон колебался между релятивизмом Канта и реализмом Рида, что и отметил Максвелл в качестве основного пункта своей собственной метафизической программы – "прочтение кантовской "Критики чистого разума" под углом согласования ее с сэром Уильямом Гамильтоном".

Максвелл намеревался найти свой собственный путь – на этот раз между Сциллой кантовского априоризма и Харибдой шотландского реализма, основанного на здравом смысле. Для последнего были характерны сильные психологические тенденции, которые в принципе допускали совмещение с логико-аналитическими традициями кантианства, что и имело место в случае максвелловской методологии.

Значительное влияние на разработку максвелловской методологии синтеза оказал также и Уильям Уэвелл. Именно у Уэвелла позаимствованы принципы активной роли человеческого разума в процессе познания, об относительности разделения на факты и теорию, об идейной нагруженности данных наблюдения, и, главное, понимание неразрывной связи индукции и дедукции в процессе коллигации и внимание к "совпадению индукций". Но были и существенные отличия, связанные с принадлежностью Максвелла к философии шотландского Просвещения.

В итоге основы максвелловской методологии, отчасти основанные на уроках, извлеченных Максвеллом из философии Канта, Уэвелла и шотландской философии здравого смысла, можно свести к следующим принципам:

(I) "принцип относительности научной истины";

(II) "принцип активности теории по отношению к опыту";

(III)"принцип взаимооплодотворения разными науками друг друга": только те понятия должны "выжить" в процессе тщательного сопоставления с другими, которые способствуют объединению, взаимопроникновению различных встретившихся друг с другом теорий; отсюда следует

(IV) "принцип устранения остатков цемента": необходимо устранять те понятия, которые препятствуют синтезу теорий.

ГЛАВА ВТОРАЯ
ПЕРВЫЙ ЭТАП РЕАЛИЗАЦИИ СИНТЕТИЧЕСКОЙ ПРОГРАММЫ МАКСВЕЛЛА: СТАТЬЯ "О ФАРАДЕЕВСКИХ СИЛОВЫХ ЛИНИЯХ" (1856)

Для того, чтобы понять, каким образом Максвелл последовательно реализовывал описанные выше принципы, выведенные из попыток выделить рациональные элементы как из кантовской философии, так и эпистемологии его английского последователя Уэвелла, равно как и из шотландского "реализма здравого смысла" с упором все-таки на Канта, обратимся к его основным работам по электромагнетизму. Традиционно принято выделять четыре основных работы Максвелла:

статью "О фарадеевских силовых линиях" (1856; далее иногда обозначаемую как [I]);

статью "О физических силовых линиях" (1861– 1862; [II]),

(1) первая часть которой была опубликована в журнале "Philosophical Magazine" в апреле 1861;

(2) вторая часть которой была опубликована в том же журнале в мае 1861;

(3) третья часть – в январе 1862 г.;

(4) четвертая – в феврале 1862 г.;

статью "Динамическая теория электромагнитного поля" (1864; [III]);

монографию "Трактат об электричестве и магнетизме" (1873; [IV]).

Основные вопросы, которые встают перед нами при попытках понять все творчество Максвелла в области теории электромагнетизма в совокупности, как единое целое, сводятся к следующим.

(a) Можем ли мы говорить о единой, целостной программе Максвелла, т.е. действительно ли существуют какие-либо общие положения, которые (пусть неявно) переходят из одной работы Максвелла в другую, придавая всем им определенное единство?

(b) Имеем ли мы право говорить о синтетической программе Максвелла, если термина "синтез" сам Максвелл старательно избегает, говоря просто о "теории электромагнитного поля"? (Скажем, Маргарет Моррисон утверждает, что Максвелл и не пытался что-либо объединить, а "просто строил теорию электромагнитных явлений").

(c) Зачем понадобилась программа Максвелла, если была другая программа – Ампера-Вебера, которая превосходно объединила и электричество, и магнетизм в единой, понятной и непротиворечивой теоретической схеме, и уже начала успешно присоединять к ней и оптику, о чем сам Максвелл был прекрасно осведомлен?

– Ключ к ответу – не только в самих научных работах, подобных [I] -[IV], но и в философских и научно-популярных произведениях и докладах, а также в письмах Максвелла. Но проблема реконструкции его аутентичных мыслей и замыслов осложняется следующими обстоятельствами.

(1) Хорошо известной амбивалентностью, туманностью высказываний Максвелла, восходящей, судя по всему, еще к детским годам. Как пишет один из его биографов, "его постоянная сосредоточенность на собственных мыслях привела к привычкам одиночества и уединенности, которые сформировали особенности его речи и манер. Он был застенчивым и странным малым, а его высказывания были часто туманны как по форме, так и по существу" (Niven, 1890, p. XI).

Другой современник, близко знавший его уже по студенческим годам, отмечал, что "к сожалению, его любовь к аллегориям, соединенная с определенной туманностью в выражениях, приводила к тому, что часто понять смысл его высказываний было затруднительно…" (Campbell & Garnett, 1888, p. 478).

И, наконец, третий современник Максвелла, знавший его в зрелые годы, указывал на то, что "старые особенности его манеры говорения остались без изменения, и по-прежнему было непросто проникнуть в содержание его мыслей" (Campbell & Garnett, 1888, p. 478). Судя по всему, именно эти особенности (а также шотландский акцент) привели к определенным сложностям в отношениях со студентами, чем и объясняется то, что профессор Максвелл никогда на одном месте долго не задерживался. Ни в абердинском университете (1856-1860), ни в Кингз-колледже (Лондон, 1860-1864).

(2) Самой манерой подачи результатов, принятой в "викторианской" физике XIX в. и сохранившейся вплоть до второй половины XX в., например, в советских научных журналах, когда полученные данные старались представить в максимально "пристойном", "причесанном", логически-упорядоченном виде, скрывающем все сомнения, отступления и промежуточные этапы. Как отмечал много позже сам Максвелл в "Трактате об электричестве и магнетизме", "метод Ампера, однако, хотя и изложен в индуктивной форме, не позволяет нам проследить процесс образования и развития идей, которыми он руководствовался. Мы с трудом можем поверить, что Ампер в действительности открыл закон взаимодействия при посредстве описываемых им экспериментов. Мы вынуждены подозревать, в чем, впрочем, признается сам Ампер, что закон открыт им при помощи некоего процесса, который он нам не показывает, и что когда была построена законченная теория, он удалил все следы лесов, при помощи которых здание было возведено (Максвелл, [1873], 1952, С. 382).

Все это, с нашей точки зрения, в неменьшей мере применимо к самому автору "Трактата".

Но обратимся к самой первой работе по электромагнетизму – к статье [I] "О фарадеевских силовых линиях", впервые опубликованной в "The Transactions of the Cambridge Philosophical Society", vol. X, part 1, 1856 на основе двух докладов, прочитанных Максвеллом перед кембриджским философским обществом 10 декабря 1855 г. и 11 февраля 1856 г. В силу того, что в этой работе заложены основы всей исследовательской синтетической программы Максвелла, она заслуживает особого внимания (и более обильного цитирования).

Хотя термин "синтез", как отметила еще М. Моррисон, Максвелл практически в своих работах не употребляет, в начале этой статьи фактически речь идет именно об этом. Несмотря на то, что современное Максвеллу состояние электрической науки представляется ему "особенно неблагоприятным для спекуляций", "ни одна электрическая теория сейчас не может быть выдвинута до тех пор, пока она не раскроет связь (здесь и далее, за исключением особо отмеченных случаев, курсив мой – РМН) не только между покоящимся электричеством и электричеством токов, но и между притяжениями и индуктивными эффектами в обеих состояниях…" (Maxwell [1856]; 1890, p. 155).

Почему же это еще не было сделано и в чем же состоят недостатки существующих теорий? – В том, что в процессе обучения студент должен ознакомиться со значительным объемом запутанных математических знаний. Поэтому для дальнейшего эффективного изучения науки первым делом надо упростить и свести результаты предыдущих исследований к такой форме, которую студент способен усвоить. Результаты этого упрощения могут принять форму или чисто математической формулы, или физической гипотезы.

"Но в первом случае мы полностью теряем из виду то явление, которое мы собираемся объяснить; и, несмотря на то, что мы можем проследить следствия из данных законов, мы никогда не сможем получить более широкие представления о взаимосвязях рассматриваемого предмета.

Если же, с другой стороны, мы примем физическую гипотезу, мы получим только опосредованный образ явлений, и будем нести ответственность за ту слепоту к фактам и за ту скороспелость в принятии предпосылок, которые этим односторонним объяснением одобряются. Поэтому мы должны открыть такой метод изучения, который позволит уму на каждом этапе владеть ясной физической концепцией, не отдавая предпочтения любой теории, основанной на той физической науке, из которой эта концепция заимствована, так что она ни уводится в сторону от предмета аналитическими тонкостями, ни выходит за пределы истины из-за принятия излюбленной гипотезы.

Для того, чтобы получить физические идеи без принятия физической теории мы должны ознакомиться с существованием физических аналогий. Под физической аналогией я подразумеваю такое частичное сходство между законами одной науки и законами другой науки, которое позволяет каждой из них проиллюстрировать другую" (Maxwell [1856]; 1890, p. 155).

Метод физических аналогий поясняется на двух расхожих примерах – соотношении корпускулярной и волновой теории света и соотношением волновой теории света и теории упругого эфира. Подчеркивая, что в первом случае выводы обеих теорий совпадают, – но только тогда, когда мы рассматриваем направление, но не скорость света, Максвелл отмечает, что аналогия между движением частицы и прохождением светового луча "долгое время рассматривалась как истинное объяснение световой рефракции"; более того, она и по сей день полезна для решения определенных научных проблем.

То же справедливо и по отношению ко второй аналогии – между светом и колебаниями эластичной среды. И в этом случае данная аналогия весьма плодотворна и ведет к такому объяснению, которое раскрывает "физический смысл" явления. Если же мы проигнорируем эту аналогию, "мы получим систему истин, прямо основанных на наблюдениях, но возможно ущербную как в живости своих понятий, так и в плодотворности своего метода".

Но особенно важной представляется Максвеллу (впервые описанная в. Томсоном) аналогия между потоком тепла в однородном веществе и статическим электричеством. На первый взгляд, нет и ничего не может быть общего между физическим процессом, который описывается такими понятиями, как "температура", "поток тепла", "проводимость", и процессом, который описывается таким понятием как "сила притяжения между удаленными частями".

Назад Дальше