Первые три минуты - Стивен Вайнберг 9 стр.


К сожалению, атмосфера нашей планеты, которая почти прозрачна для длин волн больше 0,3 см, становится все менее прозрачной для более коротких длин волн. Похоже на то, что никакая наземная радиообсерватория, даже расположенная на горной высоте, не сможет измерить космический фон излучения на длинах волн много меньших 0,3 см.

Довольно забавно, что фон излучения на более коротких длинах волн был-таки измерен задолго до того, как появились все те астрономические работы, которые обсуждали до сих пор в этой главе, причем он был измерен астрономом, работавшим в оптическом, а не в радио- или инфракрасном диапазоне! В созвездии Змееносца имеется облако межзвездного газа, которое по случайности лежит между Землей и горячей, но во всех других отношениях ничем не примечательной, звездой ζ Змееносца. Спектр ζ Змееносца пересечен рядом необычных темных полос, указывающих на то, что лежащий на пути света газ поглощает его на множестве определенных длин волн. Это те длины волн, на которых фотоны имеют необходимые энергии для того, чтобы индуцировать переходы молекул газового облака из состояний с меньшей в состояния с большей энергией. (Молекулы, как и атомы, существуют только в состояниях с определенной, или "квантованной", энергией.) Таким образом, наблюдая длины волн, при которых возникают темные полосы, можно сделать ряд выводов о природе этих молекул и о состояниях, в которых они находятся.

Одна из линий поглощения в спектре ζ Змееносца находится на длине волны 3875 ангстрем (одна 38,75-миллионная доля сантиметра), указывая на существование в межзвездном облаке молекулы циана CN, состоящей из одного углеродного и одного азотного атома. (Строго говоря, CN следует называть "радикалом", имея в виду что при нормальных условиях он быстро соединяется с другими атомами, образуя более стабильные молекулы, например яд - циановую кислоту HCN. В межзвездном пространстве CN вполне стабилен.) В 1941 году У. С. Адаме и А. Мак-Келлар обнаружили, что эта линия поглощения в действительности расщеплена и состоит из трех компонентов с длинами волн 3874,608; 3875,763 и 3873,998 ангстрем. Первая из этих длин волн поглощения отвечает переходу, при котором молекула циана поднимается из состояния наименьшей энергии ("основного состояния") в колебательное состояние, причем следует ожидать, что такой переход происходит, даже если циан находится при нулевой температуре. Однако две другие линии могут возникать только в результате переходов, в которых молекула поднимается из вращательного состояния, находящегося как раз над основным состоянием, в различные другие колебательные состояния. Следовательно, заметная доля молекул циана в межзвездном облаке должна находиться в этом вращательном состоянии. Используя известную разницу энергий между основным и вращательным состояниями и наблюдаемую относительную интенсивность различных линий поглощения, Мак-Келлар смог оценить, что циан подвергается некоему возмущению с эффективной температурой около 2,3 К, которое может поднять молекулу циана во вращательное состояние.

В то время, казалось, не было никаких причин ассоциировать это загадочное возмущение с вопросом о происхождении Вселенной, и поэтому работа не привлекла внимания. Однако после обнаружения трехградусного космического фона излучения в 1965 году было осознано (Джорджем Филдом, И.С.Шкловским и И.Дж. Вулфом), что этот фон как раз и является тем возмущением, которое наблюдали в 1941 году и которое вызывало вращение молекул циана в облаках Змееносца. Длина волны фотонов излучения черного тела, необходимая для того, чтобы вызвать это вращение, равна 0,263 см, т. е. короче любой длины волны, доступной наземной радиоастрономии, но все еще недостаточно коротка, чтобы проверить быстрое падение, ожидаемое для планковского распределения при З К на длинах волн короче 0,1 см.

С тех пор проводились поиски других линий поглощения, вызванных возбуждением молекул циана в другие вращательные состояния, или иных молекул в различные вращательные состояния. Наблюдение в 1974 году поглощения вторым вращательным состоянием межзвездного циана дало оценку интенсивности излучения на длине волны около 0,132 см, также соответствующего температуре около 3 К. Однако до сих пор такие наблюдения установили лишь верхние пределы плотности энергии излучения на длинах волн, меньших 0,1 см. Эти результаты вселяют надежду, так как они указывают, что плотность энергии излучения действительно начинает плавно падать на некоторой длине волны вблизи 0,1 см, как и ожидается, если это излучение черного тела. Однако такие верхние пределы не позволяют нам убедиться в том, что это на самом деле есть излучение черного тела, или точно определить температуру излучения.

Единственная возможность атаковать эту проблему заключается в том, чтобы поднять инфракрасный приемник над земной атмосферой с помощью шара-зонда или ракеты. Подобные эксперименты невероятно трудны, и поначалу они дали не согласующиеся друг с другом результаты, попеременно ободряя то приверженцев стандартной космологии, то ее оппонентов. Корнеллская ракетная группа обнаружила значительно больше излучения на коротких длинах волн, чем это можно ожидать для планковского распределения, в то время как группа шаров-зондов в МТИ получила результаты, примерно согласующиеся с теми, которые ожидаются для излучения черного тела. Обе группы продолжали свою работу и к 1972 году опубликовали результаты, указывающие на распределение черного тела с температурой, близкой З К. В 1976 году группа шаров-зондов в Беркли подтвердила, что плотность энергии излучения продолжает падать для коротких длин волн в области от 0,25 до 0,06 см по закону, ожидаемому для температур в интервале от 0,1 до ЗК. Сейчас представляется установленным, что космический фон излучения действительно есть излучение черного тела с температурой, близкой З К.

Читатель может удивиться в этом месте, почему такой вопрос не мог быть разрешен просто поднятием инфракрасного оборудования на искусственный спутник Земли, чтобы потратить столько времени, сколько нужно для аккуратных измерений заведомо над земной атмосферой. В самом деле, я не уверен, что понимаю, почему это было невозможно сделать. Приводимый обычно довод заключается в том, что для измерения столь низких температур излучения, как З К, необходимо охлаждать аппаратуру жидким гелием (холодная нагрузка), и не существует технологии, позволяющей держать подобное криогенное оборудование на борту спутника Земли. Однако трудно избавиться от подозрения, что подобные воистину космические исследования просто заслуживают большей доли ассигнований из бюджета на исследования космоса.

Важность проведения наблюдений над земной атмосферой представляется еще большей, если рассмотреть распределение космического фона излучения по направлению так же, как и по длине волны. Проведенные до сих пор наблюдения согласуются с полностью изотропным, т. е. не зависящим от направления, фоном излучения. Как отмечено в предыдущей главе, это один из наиболее сильных аргументов в пользу Космологического Принципа. Однако очень трудно отличить возможную зависимость от направления, присущую космическому фону излучения, от такой зависимости, которая равным образом связана с эффектами земной атмосферы; в самом деле, при измерениях температуры фона излучения этот фон отделяют от излучения нашей атмосферы, используя предположение, что он изотропен.

Обстоятельство, делающее зависимость фона микроволнового излучения от направления столь пленительным предметом для изучения, заключается в том, что интенсивность этого излучения и не ожидается точно изотропной. Возможны флуктуации интенсивности с небольшими изменениями по направлению, вызванные реальной крупнозернистой структурой Вселенной, либо в те времена, когда испускалось излучение, либо после этого. Например, галактики на ранних стадиях формации могут наблюдаться как тепловые пятна на небе с несколько большей, чем средняя, температурой черного тела, имеющие угловые размеры, может быть, больше половины дуговой минуты. Вдобавок к этому, почти наверняка имеются небольшие плавные вариации интенсивности излучения по всему небу, вызванные движением Земли во Вселенной. Земля вращается вокруг Солнца со скоростью 30 км/с, а Солнечная система, благодаря вращению нашей Галактики, несется со скоростью около 250 км/с. Никто точно не знает, какую скорость имеет наша Галактика по отношению к космическому распределению типичных галактик, но, вероятно, она движется в определенном направлении со скоростью несколько сот километров в секунду.

Если, например, мы предположим, что Земля движется со скоростью 300 км/с относительно среднего распределения вещества во Вселенной и, следовательно, относительно фона излучения, тогда длина волны излучения, приходящего спереди или сзади по отношению к движению Земли, должна уменьшиться или соответственно увеличиться на величину, равную отношению 300 км/с к скорости света, т. е. на 0,1 процента. Таким образом, эквивалентная температура излучения должна плавно меняться с направлением, будучи на 0,1 процента больше средней в том направлении, куда движется Земля, и на 0,1 процента меньше средней в направлении, откуда мы летим. Наилучший верхний предел, полученный в последние годы, для какой бы то ни было зависимости эквивалентной температуры от направления как раз равен примерно 0,1 процента, и, таким образом, мы находимся в мучительном положении, сумев почти что, но не совсем, измерить скорость Земли во Вселенной. Возможно, что этот вопрос не удастся разрешить до тех пор, пока не будут проведены измерения на спутниках Земли. (Когда в эту книгу вносились последние исправления, я получил от Джона Матера из НАСА Бюллетень № 1 спутника-исследователя космического фона. В нем объявлено о создании группы из шести ученых под руководством Ренье Вейсса из МТИ для изучения возможностей измерения инфракрасного и микроволнового фона из космоса. Счастливого пути!)

Мы видели, что космический фон микроволнового излучения дает мощное свидетельство того, что излучение и вещество во Вселенной когда-то находились в состоянии теплового равновесия. Однако мы еще мало извлекли для космологии из конкретно наблюдаемого числового значения эквивалентной температуры излучения, равной З К. На самом же деле, эта температура излучения позволяет определить одно критическое число, которое понадобится нам, чтобы проследить историю первых трех минут.

Как мы показали, при любой данной температуре число фотонов в единичном объеме обратно пропорционально кубу средней длины волны и, следовательно, прямо пропорционально кубу температуры. Для температуры, точно равной 1 К, в одном литре будет находиться 20282,9 фотонов, так что трехградусный фон излучения содержит около 550 000 фотонов в одном литре. Однако плотность ядерных частиц (нейтронов и протонов) в теперешней Вселенной составляет от 6 до 0,03 частиц на тысячу литров. (Верхний предел равен удвоенной критической плотности, обсуждавшейся в главе II; нижний предел соответствует нижней оценке плотности, реально наблюдаемой в видимых галактиках.) Таким образом, в зависимости от истинного значения плотности частиц, на каждую ядерную частицу в сегодняшней Вселенной приходится от 100 миллионов до 20 000 миллионов фотонов.

Более того, это огромное отношение числа фотонов к числу ядерных частиц очень долгое время оставалось примерно постоянным. В течение того периода времени, когда излучение свободно расширялось (с тех пор, как температура упала ниже, примерно, 3 000 К), фоновые фотоны и ядерные частицы не рождались и не уничтожались, поэтому их отношение, естественно, оставалось постоянным. В следующей главе мы увидим, что это отношение было примерно постоянным даже раньше, несмотря на то, что тогда отдельные фотоны рождались и уничтожались.

Это наиболее важный количественный вывод из измерений фона микроволнового излучения - сколь далеко мы ни заглянули бы в раннюю историю Вселенной, на каждый нейтрон или протон приходилось от 100 миллионов до 20 000 миллионов фотонов. Чтобы избежать ненужной неопределенности, я в последующем изложении округлю это число и буду предполагать для иллюстрации, что сейчас и тогда Вселенная в среднем содержала ровно один миллиард фотонов на одну ядерную частицу.

Одно очень важное следствие этого вывода заключается в том, что разделение вещества на галактики и звезды не могло начаться до тех пор, пока космическая температура не стала достаточно низкой, для того чтобы электроны смогли захватиться ядрами с образованием атомов. Как предвидел еще Ньютон, для того чтобы тяготение могло привести к собиранию вещества в отдельные сгустки, необходимо, чтобы оно преодолело давление вещества и связанного с ним излучения. Сила тяготения внутри любого возникающего сгустка вещества увеличивается с увеличением размера сгустка, в то время как давление не зависит от размера; следовательно, при любых заданных плотности и давлении существует минимальная масса, поддающаяся гравитационному связыванию. Она известна как "масса Джинса", так как впервые была введена сэром Джеймсом Джинсом в 1902 году в теории образования звезд. Оказывается, что масса Джинса пропорциональна давлению в степени три вторых (см. математическое дополнение 5). Перед тем как электроны начали захватываться в атомы при температуре около 3000 К, давление излучения было колоссальным и, соответственно, масса Джинса была велика, примерно в миллион раз больше массы большой галактики. Сами галактики и даже скопления галактик недостаточно велики, чтобы образоваться в это время. Однако чуть позже электроны вместе с ядрами объединились в атомы; с исчезновением свободных электронов Вселенная стала прозрачной для излучения; в результате давление излучения стало несущественным. При заданных температуре и плотности, давление вещества или излучения просто пропорционально числу частиц или фотонов, соответственно, поэтому, когда давление излучения перестало играть роль, полное эффективное давление упало примерно в миллиард раз. Масса Джинса уменьшилась на этот множитель в степени три вторых, став равной одной миллионной массы галактики. С этого момента давление одного лишь вещества было во много раз слабее того, которое могло бы предотвратить собирание вещества в видимые нами на небе галактики.

Этим мы не хотим сказать, что действительно понимаем, как образовались галактики. Теория образования галактик является одной из открытых проблем астрофизики, кажущейся сегодня еще очень далекой от разрешения. Но это другая история. Для нас важно, что в ранней Вселенной при температуре выше примерно 3 000 К Вселенная состояла не из галактик и звезд, которые мы сейчас видим на небе, а только из ионизованного и неразделимого супа - из вещества и излучения.

Другим примечательным следствием большого отношения числа фотонов к числу ядерных частиц является то, что должно было существовать время в не столь далеком прошлом, когда энергия излучения была больше энергии, сосредоточенной в веществе Вселенной. Энергия, заключенная в массе ядерной частицы, равна, согласно формуле Эйнштейна Е = mс, примерно 939 миллионам электронвольт. Средняя энергия фотона в трехградусном излучении черного тела намного меньше, около 0,0007эВ, так что даже при наличии одного миллиарда фотонов на один нейтрон или протон большая часть энергии сегодняшней Вселенной находится в форме вещества, а не излучения. Однако раньше температура была выше, - так что энергия каждого фотона тоже была выше, в то время как энергия, заключенная в нейтронной или протонной массе, всегда была одна и та же. Чтобы энергия излучения превысила энергию вещества, при наличии одного миллиарда фотонов на одну ядерную частицу необходимо лишь, чтобы средняя энергия фотона излучения черного тела стала больше одной миллиардной доли энергии, отвечающей ядерной массе, т. е. больше примерно одного электронвольта. Это соответствует тому, что температура была в 1 300 раз больше, чем сейчас, т. е. около 4000 К. Эта температура характеризует переход от "эры преобладания излучения", в которой большая часть энергии Вселенной находилась в форме излучения, к теперешней "эре преобладания вещества", в которой большая часть энергии сосредоточена в массах ядерных частиц.

Поразительно, что переход от эры преобладания излучения к эре преобладания вещества произошел как раз примерно в то же время, когда содержимое Вселенной стало прозрачным для излучения, т. е. при температуре около 3 000 К. Никто на самом деле не знает, почему должно быть так, хотя и имеются интересные гипотезы на этот счет. Мы также не знаем, какой переход произошел первым; если сейчас имеется 10 миллиардов фотонов на ядерную частицу, тогда излучение продолжало бы преобладать над веществом вплоть до момента, когда температура упала до 400 К, т. е. значительно позже того, когда Вселенная стала прозрачной.

Эти неопределенности не помешают нашему рассказу об истории ранней Вселенной. Для нас важно, что в любой момент времени задолго до того, как содержимое Вселенной стало прозрачным, ее можно рассматривать как состоящую из излучения лишь с небольшой примесью вещества. Грандиозная плотность энергии излучения в ранней Вселенной постепенно уменьшилась благодаря смещению длин волн фотонов в красную сторону в процессе ее расширения, дав возможность примеси ядерных частиц и электронов превратиться в звезды, скалы и живые существа теперешней Вселенной.

Назад Дальше