Долгие годы этот объект не представлял совершенно никакого интереса для человечества, но все изменилось в 2005 году, когда космический аппарат "Кассини", прибывший к орбите Сатурна, прошел в непосредственной близости от Энцелада и передал на Землю любопытную информацию. Оказалось, что у этого спутника есть атмосфера, состоящая преимущественно из водяных паров.
Вывод один: что-то активно восполняет запас газов, которые не менее активно "смываются" в космос (притяжение Энцелада настолько низкое, что не может удержать даже самые легкие молекулы). Источником этих паров оказались гигантские гейзеры на Южном полюсе спутника, извергающие из глубин Энцелада струи жидкой воды на высоту до 100 километров. Позже оказалось, что эти непрерывные извержения жидкой воды формируют не только слабенькую атмосферу Энцелада, но и одно из колец Сатурна – кольцо Е, которое тянется за Энцеладом, как шлейф за кометой, образуясь из мельчайших частичек замерзшей воды, выброшенной гейзерами.
Кроме того, на Южном полюсе Энцелада, на глубине 10–15 км, существует океан соленой воды, по составу практически идентичный океанам Земли! Для поддержания существования этого океана и водяных гейзеров необходимо громадное количество энергии. Ученые убеждены, что ответ кроется в близком расположении спутника к Сатурну: мощные приливные волны планеты то сжимают, то растягивают крошечный Энцелад, как и Европу, сильно разогревая его недра. Этой энергии с избытком хватает на то, чтобы поддерживать температуру воды в подледном океане на уровне до 1 °С. И это при температуре –200 °C на поверхности Энцелада!
К сожалению, на "Кассини" отсутствует оборудование, которое может обнаружить биомаркеры, поэтому получить ответы мы сможем не раньше 2029 года. Именно тогда стартуют новые миссии к Сатурну. Тем не менее вот результаты исследований, которые смог провести "Кассини", используя имеющиеся приборы: в недрах Энцелада находится углеводородный "суп", жидкая вода – соленая и по составу очень близкая к земной, и есть источники тепла… все ключевые ингредиенты для возникновения примитивных форм жизни!
По мнению ученых из института SETI, Энцелад занимает второе место в списке кандидатов на звание обитаемых планет Солнечной планеты. В нашем же рейтинге он находится на четвертом месте.
Итак, подведем итоги!
• Подледный океан Энцелада населяют примитивные формы жизни! Вероятность – 60 %.
• Вероятность существования более сложных форм – 0 %.
Венера – третий по яркости объект на земном небосводе. Лучше всего наблюдать Венеру невооруженным взглядом за несколько часов до восхода и сразу после захода Солнца. В телескоп можно без труда понаблюдать за изменением видимой фазы диска планеты.
Галилео Галилей сделал величайшее открытие, которое описал следующим образом: "При выступлении Венеры из Солнца, когда передний ее край стал приближаться к солнечному краю и был (как просто глазом видеть можно) около десятой доли Венерина диаметра, тогда появился на краю Солнца пупырь, который тем явственнее учинился, чем ближе Венера к выступлению приходила. Вскоре оный пупырь потерялся, и Венера оказалась вдруг без края". Возникновение такого оптического эффекта Михаил Ломоносов объяснил наличием у Венеры атмосферы, а точнее, то преломлением в ее верхних слоях солнечных лучей.
Самая близкая к Земле планета в периоды наибольших сближений – не Марс, а Венера – в это время она находится почти на 20 % ближе к Земле, чем Марс. Но условия на Венере далеки до идеальных – это выжженная пустыня, температура в которой не отпускается ниже 400 °C.
На первых этапах исследования Венеры с помощью космических аппаратов лидировал СССР, запустивший в 1961 году программу "Венера". В то время американцев больше привлекал Марс, да и несколько запущенных на Венеру "Маринеров" не справились со своей задачей. Именно советские станции разведали львиную долю актуальной и по сей день информации о Венере.
Хотя Венеру и называют двойником Земли, как оказалось на практике, эти планеты совершенно не похожи друг на друга. На поверхность Венеры воздействует колоссальное давление, которое создает гораздо более плотная, чем земная, атмосфера. На 96,5 % атмосфера Венеры состоит из углекислого газа, который поднял температуру на этой планете до 464 °C! Атмосфера буквально пропитана серой и ее соединениями, начиная от смертельного сернистого газа и заканчивая целыми облаками серной кислоты, изливающейся в кислотных дождях (в состав этих облаков входит еще и соляная кислота).
Жизни на поверхности Венеры нет и не может быть – ни одно из живых существ не способно выдержать такие разрушительные воздействия. Однако, 4,5 млрд лет назад Венера выглядела совершенно иначе и являлась наиболее подходящим местом для зарождения жизни в Солнечной системе. Температура на поверхности не превышала температуру кипения воды, поэтому тогда на планете существовал океан, который и должен был стать рассадником разнообразных бактерий. Однако просуществовал этот океан совсем недолго – всего 500 млн лет, то есть гораздо меньше, чем марсианский и земной. Повышение температуры привело к испарению океанической воды, а солнечные ветры планомерно "вымывали" всю воду из атмосферы в космос.
По идее, при таких условиях Венеру должны были заселить простейшие организмы. Однако точно ответить на этот вопрос сейчас не может никто.
В 2002 году на Европейской конференции по астробиологии, проходившей в городе Грац (Австрия), ученые Дирк Шульце-Макуш и Луи Ирвин предположили, что в облаках Венеры присутствуют химические вещества, которые могут быть результатом жизнедеятельности организмов.
Неявным подтверждением этой гипотезы является наличие в атмосфере газов H2S и SO2, которые в нормальных условиях вступают друг с другом в активную реакцию и взаимно уничтожаются, и незначительного количества CO, механизм превращения которого в углекислый газ до сих пор неизвестен. Единственным объяснением столь странного атмосферного состава является присутствие некой микробной формы жизни, совершенно отличной от земной, рацион питания которой включает в себя СО и СO2.
В ближайшем будущем не запланировано ни одной миссии, нацеленной на поиск венерианской жизни. Да и современное исследование этой планеты идет довольно медленными темпами: единственный автомат, запущенный для изучения Венеры после советских кораблей серии "Венера" и "Вега", – это "Венера-экспресс", автоматическая станция "Европейского космического агентства", которая успешно работает на орбите Венеры уже больше шести лет и используется для изучения состава атмосферы планеты, а также ее взаимодействия с солнечным ветром.
Итак, подведем итоги!
• Жизнь на Венере могла зародиться лишь в начале ее существования. Возможно, что где-то под поверхностью планеты скрыты останки примитивных организмов, населявших древние моря Венеры. Вероятность найти такие останки составляет не более 25 %.
• Зародившаяся в ныне испарившихся океанах жизнь могла адаптироваться к происходившим с планетой изменениям и перекочевать в верхние слои атмосферы. Вероятность этого – 40 %!
Юпитер сильно выделяется на фоне других объектов Солнечной системы, и дело тут, конечно же, в его размерах. Сложно представить, но его масса составляет 319 масс Земли – на долю Юпитера приходится более 70 % от массы всех планет Солнечной системы! Диаметр этой планеты в 12 раз больше диаметра Земли и равен 133 710 километрам.
Размеры Юпитера близки к максимальным для планетарного объекта данного типа – если бы он весил еще больше, это привело бы к сжатию планеты. У Юпитера нет четко очерченной твердой поверхности. Чем ближе к центру планеты, тем выше температура и плотнее газ, в основном это водород. Атмосфера разделяется на три слоя:
– внешний, который целиком и полностью состоит из водорода;
– средний, где 90 % водорода и 10 % гелия;
– нижний, в состав которого входят водород, гелий и примеси гидросульфата аммония, аммиака и воды, из которых формируются три слоя облаков:
– верхние – облака аммиачного льда. Их температура постоянна и составляет -145 °С, давление не превышает 1 атм.;
– средние – облака ледяного гидросульфида аммония;
– нижние – водяной лед и конденсат в виде мельчайших капель жидкой воды.
Дальнейший спуск в атмосферу сопровождается все большим увеличением температуры и давления, значения которых достигают поистине чудовищных величин. Газы постепенно переходят в жидкую форму. Примерно на глубине в 21 000 километров давление составляет 200 000 земных атмосфер, а температура равна 6 000 °C! Здесь атмосфера плавно переходит в океан из жидкого металлического водорода, сформировавшийся под воздействием колоссальных давлений и высоких температур – при таких условиях потенциал ионизации водорода значительно меньше кинетической энергии электронов, что приводит к отделению электрона от протона, следствием чего является высокая электропроводимость металлического водорода. Предполагаемая толщина слоя металлического водорода – 42–46 тыс. км.
Во втором, нижнем, океане Юпитера активно протекают сложные электрические, конвекционные и магнитогидродинамические процессы. Известно, что именно они генерируют мощнейшее магнитное поле Юпитера.
Погрузимся еще глубже внутрь планеты – на 30 000 км. Температура поднялась до 30 000 °C, а давление до 100 000 000 атм. Здесь же приютилось и совсем крошечное ядро (которое, впрочем, в 10 раз тяжелее Земли и в 1,5 раза больше!). Ядро стало результатом слипания частиц, состоящих из тяжелых химических элементов. С него началось образование планеты. Тепловая энергия в ядре генерируется по механизму Кельвина – Гельмгольца, за счет чрезвычайно медленного гравитационного сжатия планеты. Юпитер не производит энергию ядерным синтезом, как Солнце, он слишком мал для этого, и его внутренняя температура слишком низкая для того, чтобы запустить ядерные реакции. Наличие внутренней тепловой энергии, возможно, вызывает конвекцию глубоко в жидких слоях Юпитера, вследствие чего наблюдаются сложные движения в верхних слоях облаков.
Гравитационное поле Юпитера выступает щитом для внутренних планет, в том числе и для Земли. Юпитер играет роль своеобразного космического "пылесоса", очищая Солнечную систему от кометного мусора. Юпитер сильно влияет на движение всех тел в Солнечной системе и не пропускает большую часть комет к внутренним планетам. Из-за своего мощного притяжения это гигантское небесное тело не только "принимает" на себя удары, но и отклоняет движение комет. Однако тут есть и обратная сторона медали. Юпитер влияет не только на кометы, но и на астероиды, изменяя их траектории совершенно непредсказуемым образом: чаще всего направляя их именно в сторону внутренних планет. Таким образом, получается, что Земля защищена от комет, но, в то же самое время, подвержена атакам астероидов. Тем не менее без Юпитера количество объектов, сталкивающихся с Землей, было бы намного выше.
Итак, может ли жизнь существовать на Юпитере? Из всей огромной атмосферной толщи Юпитера нас интересует только слой толщиной в 70 км, залегающий на 70-километровой глубине и уходящий вглубь планеты. Только там присутствуют все необходимые условия для зарождения простейшей жизни: давление – от 8 до 10 атмосфер Земли, – температура, в зависимости от глубины, колеблется от 0 до 100 °С, вследствие чего в этом слое существует столь необходимый компонент для формирования жизни, как жидкая вода! К сожалению, ее не так много, как на Земле, но некоторые области можно без преувеличения назвать настоящими оазисами, в которых происходит формирование небольших облаков, состоящих из газов, мельчайших капелек воды и углеводородов. Именно эти облака могут быть средой обитания бактериальных форм жизни.
Помимо этого, верхние слои атмосферы Юпитера могут населять простейшие живые организмы, использующие вместо воды аммиак. В пользу этой теории высказывался еще в 1970-х годах американский астрофизик Карл Эдвард Саган. Также нельзя исключать возможность химической эволюции в атмосфере Юпитера, где даже на небольшой глубине значения плотности и температуры высоки, так как расчетные скорости протекания химических реакций благоприятствуют этому.
Основываясь на результатах сложных физико-химических расчетов, американские ученые Карл Эдвард Саган и Эдвин Эрнест Солпитер вывели три гипотетические формы живых существ, потенциально обитающих в юпитерианской атмосфере.
1. Синкеры (англ. sinker – "грузило") – крошечные организмы, способные размножаться с молниеносной скоростью и давать большое число потомков. Это позволяет выжить части из них при наличии опасных конвекционных потоков, способных унести синкеров в горячие нижние слои атмосферы;
2. Флоатеры (англ. floater – "поплавок") – гиганты размером с небольшой город, похожие на воздушные шары. "На плаву" в верхних слоях атмосферы флоатеров удерживают органы, получившие название "воздушные мешки". Эти мешки наполнены водородом и гелием, откачка которого происходит непрерывно. Питаются такие существа органическими молекулами, кишащими в атмосфере, или вырабатывают их самостоятельно, подобно земным растениям.
3. Хантеры (англ. hunter – "охотник") – хищники, питающиеся флоатерами.
Впрочем, большинство видных ученых не придерживаются точки зрения Сагана, считая его рассуждения лишь игрой фантазии. Тем не менее газовые гиганты, подобные Юпитеру, столь распространены во Вселенной, что нет сомнений: где-то могут существовать и такие формы жизни.
Итак, подведем итоги!
• Жизнь на Юпитере может существовать исключительно в верхних слоях атмосферы и в простейших формах, вероятность найти ее невелика и составляет всего 30 %.
• Вероятность обнаружения более сложных форм жизни равна 0.
Ганимед представляет собой самый крупный спутник нашей планетарной системы. Его диаметр 5268 км, это на 8 % превосходит по размерам Меркурий и на 80 % Луну. Ганимед тяжелее Луны в 2 раза.
Орбита обращения Ганимеда вокруг Юпитера имеет правильную круговую форму с радиусом 1,07 млн км. Один оборот спутник успевает сделать за 7,155 земных суток. С поверхности Юпитера Ганимед хорошо виден: он в 15 раз крупнее Луны на земном небе.
Состоит Ганимед в основном из твердых каменных пород и водяного льда, причем и того и другого примерно поровну. У спутника также имеется сверхразряженная атмосфера, состоящая из кислорода, который образуется при бомбардировке льда радиоактивными частицами.
Поверхность Ганимеда покрыта древними кратерами. Более молодые кратеры вскрывают поверхностные слои, обнажая чистейший лед, в результате чего выглядят кристально белыми.
В конце 90-х годов ХХ века зонд "Галилео", исследовавший спутники Юпитера, сделал неожиданное открытие – у Ганимеда есть довольно сильное магнитное поле, которое защищает его от радиационных поясов Юпитера и космического излучения. Вслед за этим была выдвинута гипотеза, что спутник имеет богатое железом расплавленное ядро.
Вооруженный магнитометрами "Галилео" выяснил, что в магнитном поле Ганимеда происходят постоянные изменения. Ученые нашли единственное объяснение этому феномену – у самого крупного спутника Солнечной системы есть жидкая электропроводящая прослойка, скорее всего океан, который залегает на 170-километровой глубине под поверхностью.
Таким образом, на Ганимеде, возможно, существуют все условия для возникновения жизни: океан соленой воды, тепло, выделяемое ядром спутника, и магнитное поле, защищающее Ганимед от радиации.
Однако есть несколько "но". Во-первых, это температура воды – 70 °C, – во-вторых, гигантское давление, причиной которому 170-километровый слой каменных пород и льда.
На данный момент мы располагаем катастрофически малым количеством данных об этом мире, в результате чего шансы, что там могла зародиться жизнь, составляют 50/50. Несмотря на это, многие современные ученые убеждены, что именно океан Ганимеда является пристанищем для бактерий, микробов и более сложных форм проявлений жизни… к примеру, рыб, наподобие тех, что населяют глубины земных океанов.
Более детальную информацию по Ганимеду и его теоретическому океану мы получим не раньше 2025 года, именно тогда ожидается прилет к Юпитеру автоматической станции Europa Jupiter System Mission, которая займется поиском жизни на спутниках Юпитера.
Итак, подведем итоги!
• Если на Ганимеде есть океан, то шанс обнаружить там простейшие и более сложные живые организмы составляет 60 %.
Каллисто – четвертый по удаленности от своей центральной звезды Галилеев спутник и третий по размерам во всей Солнечной системе.
Каллисто является вторым крупнейшим спутником в системе Юпитера, первый – это Ганимед. Как и Ганимед, Каллисто представляет собой мир, полностью состоящий изо льда и горных пород. Здесь так же присутствуют древняя и более молодая поверхности.
Древняя усеяна многочисленными кратерами. Среди всех объектов Солнечной системы именно этот спутник является рекордсменом по количеству имеющихся на поверхности кратеров. Помимо этого, орбита обращения Каллисто вокруг Юпитера является самой удаленной, а это значит, что она подвержена наименьшему влиянию магнитосферы своей центральной звезды.
Однако под поверхностью Каллисто определенно залегает нечто, имеющее иную структуру, нежели поверхностные породы и лед. Подтверждением является то, что на стороне, обратной местам падения крупных метеоритов, должны формироваться складки и вспучивания, которые отсутствуют на Каллисто. Это означает, что где-то в недрах небесного тела происходит амортизация ударов некой, вероятно жидкой, прослойкой высокой плотности.
Возможность присутствия на Каллисто жидкого океана позволяет выдвинуть предположение, что там, так же как на Ганимеде и Европе, может существовать микробиологическая жизнь. Однако на этом спутнике более суровые условия, чем на Ганимеде и уж тем более на Европе. Таким образом, если на Каллисто и есть океан, то он гораздо холоднее, чем на Ганимеде, и это практически полностью исключает возможность зарождения хоть какой-либо жизни.
Вот что сказал известный американский ученый доктор Торренс Джонсон по поводу поисков жизни на Галилеевых спутниках: "Для зарождения жизни необходимо выполнение двух условий: наличие воды и энергии. На Каллисто достаточно воды, а вот единственный источник энергии, радиоактивный распад, за счет которого и происходит разогрев Каллисто, чрезвычайно слаб. По моему мнению, у нас гораздо больше шансов найти жизнь в океане Европы, активно подогреваемом приливными силами Юпитера".
Итак, подведем итоги!
• Единственными живыми обитателями Каллисто могут быть простейшие микроорганизмы, вероятность обнаружения которых составляет 15 %. Зарождение более сложных форм жизни при таких условиях невозможно.
Верны ли такие оценки, мы сможем узнать не раньше 2025 года, когда к Юпитеру прибудет беспилотный исследовательский аппарат Jupiter Ganymede Orbiter, нацеленный на исследование Ганимеда и Каллисто.