Садочной соли у нас нет
Поскольку изобретать соль человеку не пришлось, ее нужно было только найти, история соли в действительности есть история ее получения и рассказ о событиях, происходивших при отсутствии и недостатке соли. Получают соль в основном двумя путями: разрабатывая месторождения твердой каменной соли и выпаривая соленую воду. Впрочем, есть еще самосадочная соль, которая выпадает в осадок на дно перенасыщенных солью озер, самым крупным таким озером у нас является известное озеро Баскунчак. В его соли много примесей, особенно кальциевых солей, и ее приходится специально очищать. Месторождения каменной соли находятся во многих государствах и кое-где продолжают разрабатываться, а в некоторых странах перешли в разряд санаториев - считается, что воздух в старых штольнях, пробитых в слоях каменной соли, насыщен ионами (очевидно, натрия и хлора) и поэтому полезен больным астмой и прочими заболеваниями дыхательного аппарата. Это не очень понятно, вероятнее всего, механизм положительного воздействия соляных штолен какой-то другой, если он, конечно, вообще существует, а не является плодом самовнушения.
Выпаривание воды из соляных растворов сейчас распространено гораздо больше, чем добыча каменной соли, несмотря на превосходство последней по качеству. Получаемая выпариванием воды соль делится на выварочную и садочную. Выварочную соль получают при упаривании естественных или искусственных рассолов, добываемых из недр Земли. Естественные рассолы образуются при самопроизвольном растворении подземных залежей каменной соли, а искусственные - при растворении пластов каменной соли в принудительно подаваемой через скважину воде. Перекачанные на поверхность солевые растворы упаривают либо в плоских чанах прямо на воздухе, либо в вакуум-аппаратах (при пониженном давлении). Вакуум-выварочная соль - самая высококачественная из всех видов поваренной соли. Она представляет собой чисто-белый мелкокристаллический продукт с чисто соленым вкусом. Содержание в ней NaCI достигает 99,7 %. В России выварочную соль вырабатывают в Пермской и Иркутской областях, а также в Республике Коми.
Садочную соль получают, выпаривая воду океанов, морей, озер и отводя воду в неглубокие лиманы. Делают это обычно в местах с жарким климатом, где вода испаряется просто под солнцем. После распада СССР Россия потеряла практически все эти лиманы, ведь большинство из них находятся вокруг Крыма. Очень важный момент - состав получаемой соли вовсе не совпадает с солевым составом морской воды, в противном случае соль должна была бы горчить из-за присутствия ионов магния. И здесь соледобытчики сыграли на различной растворимости разных солей в воде. Прежде всего в осадок выпадают малорастворимые соли железа и кальция, оставшийся раствор переливают в другой бассейн, где выпадает хлористый натрий, хотя и со значительным количеством примесей. Эти примеси - хлориды магния MgCl2 и кальция CaCl2, - впоследствии удаляют с помощью специальных приемов, не будем останавливаться на этом, скучновато. Соль, которая получается в результате, не отличается высокой чистотой. Ну да и ладно, садочную соль добывают в небольших количествах.
История обессоливания
Понятно, что в любом случае солеварение устраивали всегда рядом с источником соляного раствора, то есть около морей, соленых наземных или подземных озер. В России начиная с XII века солеварни распространились у поморов на Белом море, хотя первые свидетельства о выварке соли на Руси известны с X века. Соли никогда не было в избытке, к тому же отечественное начальство облагало ее большими налогами. В 1648 году коса нашла на камень, произошел Соляной бунт, в ходе которого горожанами было убито изрядное количество бояр. Царя не тронули, царь, как впоследствии и другие руководители нашего государства, "ничего не знал" о злоупотреблениях своих клевретов. Дольше всех бунтовал Псков. Налоги были все-таки уменьшены. В 1675 году снова прошли соляные бунты, причем не только в России, но и во Франции, где королевская камарилья поступала с солью вообще самым подлым образом: мало того что был установлен немалый налог на соль и ее продажа была монополизирована государством, так власти еще и в приказном порядке определили, сколько соли обязан (!) был покупать каждый подданный в неделю.
Как и в случае с водкой, российские правительства тоже всегда стремились монополизировать продажу соли, продукта повседневной необходимости, - ведь все равно купят, куда денутся? При этом цена казенной соли была, разумеется, существенно выше, чем у частных производителей. В России соляная (и табачная) монополия появились при Петре I, а вскоре была создана и Соляная контора для прокорма очередной банды чиновников, отслеживавших соблюдение монополии и регулярное поступление доходов в казну и в свой карман. Все это привело к обычному для государственного ведения хозяйства результату - соли стало катастрофически не хватать. Александр II Освободитель в 1861 году отпустил крепостных, а в следующем году - соль. И о чудо! Кто бы мог подумать! Дефицит соли немедленно исчез.
Соленый наркотик
Во Франции налог на соль отменила Великая французская революция. Вообще не будет большим преувеличением определить тиранию как способ правления с обязательной соляной монополией, а демократию - как свободу покупать и продавать соль кем и кому угодно. В СССР, где соль была монополизирована государством, теоретически ее было сколько угодно, ведь страна располагала громадными месторождениями каменной соли, да и могла бы вырабатывать прорву морской соли. На практике соль то была в продаже, то исчезала, а во время Великой Отечественной войны и много лет после нее стала остродефицитным продуктом. Конечно, эта экономическая проблема была успешно решена с другой, так сказать, стороны - невероятным сокращением количества потребителей соли, погибших во время войны и в послевоенные голодные годы.
Сейчас соли полно. Появились даже изыски. Не говоря об отечественных "профилактической" и йодированной соли, продается импортная "морская соль", содержащая не обычные 98 % хлористого натрия, а существенно меньше за счет наличия в этой соли других ионов - магния, кальция, йода, брома, сульфата. Возникла и мода на "природную" соль, которая представляет собой крупнозернистый грязноватый продукт первичного вываривания. Никаких преимуществ перед очищенной солью у него, конечно, нет, за исключением того, что в растворе такой соли лучше солить огурцы - они получаются более упругими, прочными и хрустящими. (Говорят, за счет присутствия в такой соли большего количества солей магния.)
В заключение - анекдот, который вполне мог быть и былью. Однажды президент Колумбии, естественно, бывший крупный наркобарон, прилетел в СССР по приглашению наших партии и правительства. Внизу у трапа его ждали девушки в русских одеждах с хлебом-солью. Потрясенный президент ухватил щепотку соли, вдохнул в ноздрю и восторженно произнес: "Вот это да, нигде меня так не встречали!"
А теперь пора поговорить и об элементах вообще, причем о самых интересных - о новых элементах в Таблице Менделеева.
Глава 11
Самые новые
Удивительное явление радиоактивности было впервые обнаружено при изучении люминесцентной соли урана (см. главу 15). Следующими открытыми радиоактивными элементами стали радий и полоний, но сейчас для нас важно то, что все эти три элемента присутствуют в природных источниках. Устойчивым изотопом урана является уран-238 с периодом полураспада 4,5 миллиарда лет, что практически совпадает с возрастом Земли. Другими словами, у элемента урана имеются собственные руды, из которых его можно извлекать.
До урана и за ураном
У радиоактивного элемента радия Ra имеется изотоп радий-226 с периодом полураспада 1600 лет, у полония - изотоп полоний-209 с периодом полураспада 102 года. И то и другое намного меньше возраста Земли, и собственных руд ни радий, ни полоний не имеют, а образуются в природе при распаде изотопов урана или тория. И выделяют их из урановой руды.
В Таблице Менделеева элементы с номерами 90-103, от тория Th, протактиния Pa и урана U до лоуренсия Lr, выделены в особую группу под названием "актиноиды". Это связано с тем, что при переходе от актиния к каждому последующему элементу электрон попадает не на внешний электронный слой, а на внутренний, так называемый f-слой. А поскольку химические свойства элемента определяются составом внешнего электронного слоя, а он практически одинаков для всех актиноидов, то и химические свойства этих элементов очень близки. Поэтому вся группа целиком помещается в клетке актиния № 89.
Аналогично актиноидам выделены в особую группу и лантаноиды, целиком помещающиеся в клетке элемента лантана La. Любопытно, что запоздалое открытие этих элементов очень поспособствовало Дмитрию Ивановичу Менделееву в открытии его периодического закона и Периодической таблицы. Если бы эти 14 элементов были открыты раньше, Менделееву никак бы не удалось составить свою таблицу, ведь тогда о строении электронных слоев и возможности помещать кучу элементов всего в одну клетку никто и не подозревал.
Самым устойчивым и самым распространенным элементом группы актиноидов являются торий и уран, открытый в конце XVIII века и названный так в честь планеты Уран. Это один из тех элементов, для которых Менделеев волюнтаристски, но совершенно правильно изменил значение атомной массы. До открытия им периодического закона считалось, что атомная масса урана равна 120, но это никак не соответствовало логике Таблицы элементов. Дмитрий Иванович, не проводя никаких экспериментов, а только имея информацию о химических свойствах урана и его соединений, присвоил урану атомную массу 240. Сейчас известны три природных изотопа урана - уран-234, уран-235 и уран-238, и принятое среднее значение атомной массы составляет 238,029. От присвоенного Менделеевым значения эта величина отличается всего на ничтожные 0,82 %.
Уран, точнее, его изотоп уран-238, является последним стабильным элементом Таблицы Менделеева, все последующие элементы стабильных изотопов с периодом полураспада не меньше возраста Земли не имеют. Они были получены искусственно. Так, например, следующий за ураном элемент № 93 был получен в 1940 году путем бомбардировки урана нейтронами. В Солнечной системе за планетой Уран находится планета Нептун, в честь нее этот элемент назвали нептунием. А полученный таким же образом элемент № 94, знаменитый плутоний атомных бомб, назвали в честь следующей за Нептуном планеты Плутон. Плутоний - тот самый элемент, с использование которого была создана бомба "Толстяк", сброшенная на Нагасаки в 1945 году. И нептуний, и тем более плутоний можно теоретически выделить из природного сырья, но их там так мало, что приходится получать эти элементы в ядерных реакциях. Причем оружейного плутония накоплено уже около 300 тонн. Когда на циклотроне были получены первые несколько миллиграммов плутония, все сотрудники Калифорнийского университета сбежались посмотреть на это чудо. Однако показать было практически нечего, а потому авторы открытия насыпали немного первого попавшегося под руку порошка в пробирку и демонстрировали ее, гордо сообщая, что этот порошок и есть искусственный элемент плутоний.
Следующие искусственно получаемые элементы америций Am, кюрий Cm, берклий Bk, калифорний Cf, фермий Fm и менделевий Md имеют изотопы с периодами полураспада от тысяч лет до нескольких суток, самый долгоживущий изотоп элемента № 102 нобелия No наполовину распадается уже менее чем через час, а элемента № 103 лоуренсия Lr - за три минуты. На этом элементе заканчивается семейство актиноидов. Обратим внимание на символ элемента кюрия, названного, разумеется, в честь семейства Кюри. Казалось бы, ненужная в данном случае латинская m подчеркивает роль в изучении радиоактивности madam Кюри.
По завершении семейства актиноидов взгляд возвращается в основную часть Таблицы Менделеева, и первым после лоуренсия мы видим элемент № 104 резерфордий Rf, а затем - № 105 дубний Db, № 106 сиборгий Sg и № 107 борий Bh с периодом полураспада уже меньше минуты, а именно 17 секунд. Дубний назван в честь города Дубны, где он был впервые синтезирован в Объединенном институте ядерных исследований (ОИЯИ). Большинство изотопов следующего элемента № 108 хассия Hs имеют период полураспада меньше секунды, а у элемента № 109 мейтнерия Mt все изотопы наполовину распадаются за доли секунды.
Однако элемент № 110, дармштадтий Ds, имеет изотопы с периодом полураспада уже более секунды. Существует теория, что последующие элементы должны иметь все большие периоды полураспада вплоть до "острова стабильности" в районе 120-го элемента. Настолько большие, что могут быть даже обнаружены в природе, существуя со времен возникновения Земли. Новый элемент № 112 с временным названием "унунбий" (то есть "один-один-два" по латыни) был впервые получен в 1996 году на ускорителе тяжелых ионов в Центре исследования тяжелых ионов в Дармштадте (Германия).
Это одна из трех главных организаций, в которых проводится синтез новых трансурановых элементов, две другие - это наш ОИЯИ в Дубне и американская Национальная лаборатория имени Лоуренса в Беркли. Между этими центрами ведется гласная и негласная конкуренция за открытие новых элементов, особенно в связи с приближением к этому самому "острову стабильности". И действительно, у № 112 уже вполне приличный период полураспада - 34 секунды.
После длительных проверок, в том числе в Дубне, Международный союз теоретической и прикладной химии (ИЮПАК) признал приоритет Дармштадтского центра и сам факт открытия. Это означает, что немецкие ученые получили право выбрать имя для элемента с неказистым названием унунбий, и они предложили назвать его коперникием - понятно, что в честь Коперника. Эти ученые уже присваивали названия для элементов № 107 (борий), № 109 (мейтнерий) и № 110 (дармштадтий). Довольно благородный поступок немецких ученых, назвавших открытый ими элемент коперникий в честь поляка. Хотя как сказать. Мать Николая Коперника была немкой, на польском языке он не написал ни строчки, а использовал исключительно латынь и немецкий, город Торунь, где родился великий ученый, был основан немцами и длительное время входил в состав Пруссии.
Союз ИЮПАК утвердил название коперникий (Cp) для унунбия. В свое время Менделеев для обозначения еще не открытых элементов использовал метод аналогии и приставку "эка", что на санскрите означает "один". В таком случае № 112 должен был бы называться (разумеется, временно) эка-ртутью ("ртуть плюс один"). По аналогии с ртутью коперникий должен быть вторым, после ртути, жидким металлом при нормальных условиях, хотя получить № 112 в заметных количествах вряд ли удастся. А жаль, было бы интересно посмотреть на второй жидкий при нормальных условиях металл.
В последние годы в ОИЯИ под руководством академика Юрия Оганесяна уже получены элементы № 113–116 и № 118. Об истории получения элемента № 117 стоит рассказать подробнее, как и о самом "острове стабильности".
Как мы уже видели, при переходе от № 92 урана к № 102 нобелию период полураспада элементов уменьшается на 16 порядков - от 4,5 миллиарда лет до нескольких секунд. Считалось, что продвижение в область еще более тяжелых элементов приведет к пределу их существования, то есть обозначит границу существования материального мира. Однако в середине 60-х годов прошлого века теоретиками неожиданно была выдвинута гипотеза о возможном существовании сверхтяжелых атомных ядер, причем время жизни элементов с номерами 110–120 должно было бы заметно возрастать. Таким образом, ученые предсказывали "остров стабильности" сверхтяжелых элементов.
Остров везения
Гипотеза о существовании сверхтяжелых элементов впервые получила экспериментальное подтверждение в Дубне, где удалось полностью изменить подход к синтезу сверхтяжелых элементов. В ОИЯИ обстреливали мишени из элемента № 97 берклия "снарядами" из исключительно редкого и дорогого изотопа кальция № 20 с массой 48. При слиянии ядер получается элемент № 117 (97 + 20 = 117). Эффект был поразительный, в течение каких-то пяти лет впервые были синтезированы сверхтяжелые элементы с атомными номерами 114, 116 и 118. Ученые ОИЯИ показали (а через несколько лет их результаты были получены и в других лабораториях мира), что эти элементы живут в сотни и тысячи раз дольше, чем их более легкие предшественники.
Очень интересно, как в ОИЯИ появился искусственный элемент берклий, ведь в Дубне его не получали. Дело в том, что период полураспада нужного изотопа составляет всего 320 дней, поэтому из-за такого короткого времени жизни наработку берклия в нужном количестве (20–30 миллиграммов) надо вести в реакторе с очень высокой плотностью потока нейтронов, а такой реактор есть только в Национальной лаборатории США в Оук-Ридже (кстати, именно здесь был впервые произведен плутоний для американской атомной бомбы). Поскольку с момента производства берклия его количество убывает вдвое через 320 дней, при доставке элемента в Дубну необходимо было все делать очень быстро: быстро пройти американские и российские формальности, связанные с сертификацией необычного материала, транспортировкой высокорадиоактивного продукта наземным и воздушным транспортом, техникой безопасности и так далее. Достойно приключенческой повести!
В конце концов в начале июня 2009 года контейнер прибыл в Москву. Дубнинские умельцы изготовили мишень в виде тончайшего слоя берклия, нанесенного на титановую фольгу. Уже при первом облучении мишени детекторы пять раз зарегистрировали картину образования и распада ядер 117-го элемента. Как и ожидалось, ядра этого элемента трансформировались в ядра 115-го элемента, который в свою очередь превращался в 113-й, а тот переходил в 111-й. А 111-й элемент распадался с периодом полураспада 26 секунд. В ядерном масштабе это огромное время!
Никакого практического значения получение этого элемента, конечно, не имеет, однако представления о нашем мире теперь должны сильно измениться. Ведь если будут синтезированы элементы с огромным периодом полураспада, то не исключено, что они существуют и в природе. Эксперименты по их поиску уже ведутся, в глубине Альпийских гор стоит специальная установка по регистрации таких элементов.