Прозрение - Лев Шеромов 2 стр.


Система есть совокупность материальных элементов, которые взаимодействуют друг с другом во времени. Состояние системы определяется комплексом параметров, которые можно измерить. Вообще наука всегда имеет дело с явлениями, параметры, характеристики которых можно измерить. То есть нечто, открытое одним ученым, могут проверить (измерить) другие. Подчеркнем что понятие системы многозначно. Например, есть системы уравнений, системы управления и т.п. У нас далее используется понятие именно материальных систем. Например, организм человека и других организмов, "железо" компьютера, но не система команд, которая заставляет это железо работать, телефонная сеть, солнечная система и т.д.

Термодинамическая система – физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения характеристик отдельных частиц. Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро. Это примерно 6·10 молекул на единицу массы вещества в килограммах численно равную его молекулярному весу, дающее представление, о величинах какого порядка идёт речь. Такое количество молекул, например, содержится в 18 граммах воды (H2O → 2 + 16 = 18 – сумма атомных весов водорода и кислорода). Ограничения на природу материальных частиц, образующих термодинамическую систему, не накладываются: это могут быть атомы, молекулы, электроны, ионы, фотоны и т. д.

Исторически это понятие, да и сама наука термодинамика обозначились при постройке тепловых машин. Практически приходилось иметь дело с ограниченными объемами газа и пара, которые сжимались или расширялись, нагревались или охлаждались. Затем это понятие несколько расширилось, но все равно, характерной особенность термодинамической системы является огромное множество хаотически движущихся частиц, которые соударяются друг с другом.

Несколько слов о системном подходе, который мы также используем. Главная сущность его заключается в том, что в сложной системе могут существовать общие закономерности, никак не вытекающие из свойств элементов её составляющих (свойство эмерджентности). Простой пример. Имеется множество радиодеталей (микросхем, конденсаторов, резисторов и т.п.) любых номиналов и видов, но, изучив все их свойства, мы никак не сможем вывести из них конструкцию, например телевизора или радиоприемника. Эти аппараты можно только изобрести, т.е. изобрести их функционирование (алгоритм работы).

Ранее считалось, что наука – это исследование только природных закономерностей. Основателем этого направления "чистой науки" (редукционизма – метода разделения сложных явлений на более простые и изучения именно их, и после этого, сложное явление почти всегда становится понятным) можно считать И. Ньютона. Проводилась резкая граница между изобретениями и "истинно научными исследованиями", где, в основном, выводились и решались дифференциальные уравнения.

Но не вся природа описывается этими уравнениями. Алгоритмы, например, не описываются, а в Природе их сколько угодно. Ну, ни как не вытекает из всех уравнений физики алгоритм действия двигателя внутреннего сгорания. Его можно было только придумать, изобрести. Редукционизм и системный подход – два научных метода, дополняющих друг друга.

Мерой неупорядоченности материальных систем принимают энтропию. Чем больше энтропия, тем больше неупорядоченность. Энтропия максимальна при полном хаосе, когда невозможно выделить, найти отдельные объекты (или их системы), соответственно, нет и связей между ними. Нуль энтропии также непредставим, как и абсолютный хаос, так как невозможно вообразить предел сложности функционирования, упорядоченности материи и энергии. Заметим аналогию со временем. У него также невозможно представить начало и конец. Об энтропии будет еще много разговоров ниже, при обсуждении второго закона термодинамики.

Термины: самоорганизация и эволюция приняты идентичными в этой книге.

1. Обобщение закона о необратимости явлений реального мира

В термодинамике есть два главных закона, основанных на опыте многих столетий обращения людей с нагреванием различных веществ. Первый закон, это практически закон сохранения энергии – "теплота эквивалентна механической работе". Я не удержусь, чтобы не привести эту эквивалентность в цифрах. Нагревание одного килограмма (литра) воды всего на один градус можно сделать за несколько минут, подержав в руках литровую банку с водой. И эта теплота соответствует механической работе, которую надо затратить, чтобы поднять на один метр тело массой 427 килограмм! Этого не сможет сделать ни один человек (без приспособлений и с ограничением времени).

Впервые это удивительное соотношение определил английский ученый Джеймс Джоуль в 1843 году. Можно себе представить, как отнеслись к такому заявлению современники Джоуля. Тогда теплота считалась некоей жидкостью, перетекающей из горячего тела в холодное (теплород). Только через некоторое время работа Джоуля получила признание Томсона (лорда Кельвина) и Максвелла. Авторитет этих людей сломил отчужденность к исследованиям выдающегося ученого, среди которых надо еще упомянуть закон Джоуля о количестве выделяемого тепла электрическим током (Q=I·R·t) и закон Джоуля-Томсона, на котором основан один из методов получения низких температур (например, в домашних холодильниках).

Второй закон термодинамики, на первый взгляд, тоже довольно прост и очевиден. "Теплота не может самопроизвольно переходить от холодного предмета к горячему предмету". Это его простейшая формулировка. Это единственный закон в физике, который не безразличен к смене знака времени. Поясним примером. Пройденный путь равен скорости помноженной на время (s = v·t). Если знак времени положителен, то, зная скорость, получаем пройденный нами путь. Отрицательный знак – говорит о расстоянии, где мы были раньше на это время. И так со всеми законами физики, кроме Второго Закона. Если в идеальном случае согласно предыдущей простой формуле мы можем вернуться в начало пути, то Второй Закон говорит о том, что вернуться то можно, но только в пространстве, а не во времени.

Это типичный пример из научной и популярной литературы. Но здесь мы с вами, читатель, попались в ловушку, в которую попали и до сих пор находятся в ней многие ученые и популяризаторы науки, связавшие свои исследования с понятием – энтропия!

В приведенном примере все правильно, кроме того, что он никак не связан с термодинамикой, следовательно, с термодинамическими системами, следовательно, со вторым законом термодинамики. Давайте разбираться.

Второй закон термодинамики, который утверждает необратимость процессов во времени только в термодинамических системах, не обменивающихся теплотой с внешней средой, т.е. энтропия таких систем всегда растет. Это есть непреложный факт.

Сделаем небольшой экскурс в историю. Этот закон возник при изучении и постройке двигателей, преобразующих теплоту в механическую работу (паровых машин и проч.). Оказалось, что для получения работы надо обязательно иметь два источника теплоты, как говорят, горячий и холодный. И только поток теплоты от первого источника ко второму совершает работу. Наиболее эффективен этот процесс при использовании, так называемого рабочего тела (обычно газа или пара). Хотя, в принципе, можно обойтись и без него. Например, у Р. Фейнмана в его знаменитых лекциях по физике описано колесо с резиновыми спицами. Если эти спицы подогревать одну за другой, то колесо начнет вращаться. Можно на его ось насадить блок, и через него поднимать небольшой груз – совершать работу. Но опыт изобретений таких машин показывает, что они, например, не могут иметь большую мощность, у них мал коэффициент полезного действия и проч. Никто ими серьезно сейчас уже не занимается. Практически все тепловые машины работают циклически. Возьмем для определенности в качестве рабочего тела воздух. Он нагревается, например, в камере сгорания, где сгорает топливо, создавая при этом большое давление или большую скорость (кинетическую энергию). Давление двигает поршни поршневых машин и, следовательно, вращает их вал; кинетическая энергия преобразуется на лопатках турбин в крутящий момент на её валу. Так работают двигатели внутреннего сгорания (автомобили, речные суда, танки и т.п.) и газовые турбины (самолеты, корабли). Далее рабочее тело поступает в атмосферу (у этих двух двигателей), где оставшаяся в нем теплота теряется (отдается холодному источнику). Цикл замкнулся, так как двигатель забирает рабочее тело из атмосферы, но, понятно, совсем из другого места, где воздух чист, не смешан с продуктами сгорания. Существуют машины, в которых рабочее тело не выходит наружу, но в этом случае необходимы два теплообменных аппарата – в одном из них рабочее тело нагревается, в другом – охлаждается. Это, например, паротурбинные установки, двигатели Стирлинга, обыкновенные домашние холодильники.

Возникает вопрос. Нельзя ли как-то построить тепловой двигатель без холодного источника тепла? Это не противоречит закону сохранения энергии. Очень много теплоты, например, в мировом океане. Вот бы ее использовать! Но еще в 1824 году французский инженер Сади Карно доказал, что такая машина принципиально невозможна. В качестве простой аналогии он сравнил тепловые и водяные двигатели. Производство работы в последних связано с падением воды с более высокого уровня на более низкий. Ясно же, что нужны два уровня воды. Так и возможность работы тепловых двигателей связана с переходом теплоты с более высокого (горячего) уровня к более низкому (холодному).

Это заключение здравого смысла, подтвержденное всем опытом создания тепловых машин, было принято как научный закон – второй закон термодинамики.

Термодинамика, в своем практическом применении, содержит специфические величины трех видов: параметры, функции состояния и термодинамические процессы. Параметры это давление, температура, объем. Функции показывают возможные зависимости этих параметров между собой. Это, например, внутренняя энергия, энтальпия, энтропия и т.д. Процессов всего два – отвод или подвод теплоты к системе и процесс механической работы, которую совершает термодинамическая система, или работа совершается над ней.

Как видим, энтропия находится в ряду обыкновенных термодинамических функций. Она может увеличиваться или уменьшаться как угодно, в зависимости от принципа действия конкретной тепловой машины. Например, в двигателе автомобиля она меняет знак своего изменения пропорционально частоте вращения вала.

Но необратимость во времени действительна для всей Природы – живой и неживой. И не объясняется термодинамикой. Всё в природе стареет и разрушается. Все родившиеся люди, рано или поздно, умрут, сгладятся горы, потухнет Солнце и т.д. Но только невозможно распространить этот вывод на всю Вселенную. Не имеем права, так как ещё многого не знаем! Но как бы нам "выйти из оков" термодинамики, термодинамической системы, объяснить эту "всеобщую необратимость"?

В природе есть множество систем, которые имеют другую структуру, другие характерные особенности, чем термодинамическая система. Это, например, биологические системы, технические системы. Все они, конечно, состоят из более или менее хаотично движущихся молекул, но имеют свои, более сложные закономерности, которые и определяют их сущность. Но, очевиден факт, что во всех, без исключения, системах и в других объектах реального мира необратимость также присутствует. Например, любой индивидуальный объект в природе стареет, разрушается, изнашивается. На первый взгляд, исключение составляют атомы и молекулы стабильных химических веществ. Но и тут нет уверенности. Они, может быть, тоже разрушатся, но для этого нужен очень большой промежуток времени, на котором возникнут такие внешние условия, которые преодолеют их стабильность.

Но некоторые материальные системы идут в противоположном направлении, развиваются, эволюционируют, накапливают информацию, со временем делаются все сложнее и сложнее – отдаляются от хаоса. Хочется сказать, что энтропия в них снижается, но подождем; рассмотрим сначала причину роста неопределенности в реальном мире.

Начнем с простого примера. Многократно подбрасывая монету, мы опытным путем приходим к заключению, что вероятность выпадения"орла" или "решки" равна 0,5. Почему так происходит? Может быть, мы не знаем некоторых тонких физических закономерностей этого явления, которые позволяют точно рассчитать это число. Оказывается, мы в принципе не можем этого сделать. Попытка идеализации модели подбрасывания монеты, ее начального положения, геометрической формы, механизма подбрасывания и т. д. не приводит к решению этой проблемы. Для идеального опыта можно написать уравнения движения монеты. Но и они не помогут. Мы встречаемся с неопределенностью. При подбрасывании мы толкаем монету вверх; но она будет находиться во время действия силы в неустойчивом равновесии (как палка, вертикально поставленная на палец) и наклонится в любую сторону с одинаковой вероятностью. Имея теперь эту начальную информацию о вероятностных явлениях в природе, попробуем обосновать необратимость, нарастание неопределенности состояния со временем вообще в природе, не только в термодинамических системах.

В истории науки успехи развития ньютоновской механики привели к идее, что все в мире следует строгим законам движения. Грандиозное подтверждение этого предстало при использовании этих законов в описании движения небесных тел. Все элементы их движения: скорость, форма пути движения планет (орбиты), моменты нахождения небесных объектов в некотором месте небосвода рассчитывались с небывалой точностью, до многих знаков после десятичной запятой. Предсказывались солнечные затмения на десятилетия в будущее, получили объяснение сложные петли движения по небосводу планет солнечной системы и Луны. И если иногда в земной практике получался неточный результат, с определенной вероятностью (подбрасывание монеты или игральной кости), то это объяснялось тем, что мы еще не всё знаем, поэтому не можем учесть все факторы, влияющие на данное явление. Но в будущем, несомненно, все будет предсказано точно. Тогда в воображении людей и появилось фантастическое существо – демон Лапласа, который мог бы рассчитать как угодно далекое будущее. Дайте только ему положение в пространстве всех частиц материи в данный момент времени и их скорости. Хотите увидеть отдаленное прошлое, пожалуйста, посчитаем по уравнениям и покажем. Все в мире предопределено. И это создает спокойствие и чувство защищенности в психике человека, в его душе – все закономерно, все можно предвидеть, обдумать и действовать соответственно.

В истории науки концепция причинного объяснения движения больших систем по жестким динамическим законам Ньютона получила наименование лапласовского детерминизма). Он имеет глубокие корни и в современной науке. А откуда берется неопределенность и есть ли она вообще, остается неясным.

Поэтому в науке сложилась традиция, когда природные явления всегда пытались выразить в виде детерминированных уравнений (математических моделей), в частности дифференциальных уравнений. Типов математических моделей много. Все крупные разделы математики, так или иначе, разработаны, исходя из практических потребностей моделирования. Главной особенностью детерминированных математических моделей является то, что они всегда исходят из начальной, простой сущности изучаемых явлений. Законы: Архимеда, Гука, Ома, Бернулли, Максвелла и т.д. Можно привести еще много точных закономерностей и не названных по имени ученых. Вообще исторически сложилось мнение "интеллектуальной уверенности", всемогущества познавательной деятельности человека: "Если мы пока не знаем объяснения некоторым явлениям, то нет никакого сомнения в том, что мы разберемся в них в будущем". В начале XX века вся вселенная представлялась большим механизмом, работающим четко и однозначно. Некоторый диссонанс создавала теория вероятностей, но для большинства ученых и инженеров ее выводы опять были лишь следствием нашего временного незнания более глубоких закономерностей.

Но эти уравнения обычно имеют неустойчивые решения: нули в знаменателе дробей, разрывы функций или их производных и т.п. То есть, уравнения не всегда дают однозначное решение. И эти неопределенности всегда проявляются в эксперименте.

Простой пример. Построим модель изгиба металлического стержня, сжатого силой, направленной вдоль его оси. Первоначально, для простоты рассуждений, приложим силу не по центру сечения стержня, а несколько сбоку. Получится небольшой рычаг, который, тем не менее, определит направление изгиба. В науке сопротивления материалов выведена точная формула для этого случая – построена математическая модель. Но теперь уменьшим наш рычажок до нуля, т.е. поставим силу точно в середину сечения стержня. Формула остается действительной и покажет, что прогиб будет равен нулю. Но не во всех случаях. При заданной силе и при определенном сочетании параметра упругости материала стержня и характеристики его поперечного сечения (момента инерции) в формуле возникает неопределенность в виде 0/0. Результат эксперимента всегда приводит к тому, что при увеличении силы балка выгнется в кривую, но в какую сторону! Этого предсказать невозможно. Математической модель оказывается бессильной.

Второй, гораздо более сложный пример. Рассмотрим турбулентное течение жидкости в трубе. Например, – воды. Математическая модель движения вязкой жидкости имеется, строго выведена из простейших явлений Природы, не подвергаемым никаким сомнениям. Это, так называемые, дифференциальные уравнения Навье – Стокса. Воспользуемся этой моделью. Возьмем некоторое поперечное сечение трубы и выберем в нем некоторую точку (частицу) с определенными координатами и скоростью. Это будут начальные условия для наших уравнений. Будем искать траекторию движения частицы вдоль течения в трубе (это, так называемое, граничное условие; на стенках трубы скорость жидкости равна нулю). И мы довольно легко найдем ее конкретные положения во времени и пространстве, применяя численный метод решения дифференциальных уравнений. Но попробуем повторить расчет, в точности восстановив начальные условия. Как это ни странно, но мы получим совершенно другую траекторию, и другое положение частицы в заданный момент времени [11]. И сколько бы раз мы не повторяли этот численный эксперимент, каждый раз получатся другие результаты. В чем же дело? Демон Лапласа озадачен. Мы явно наблюдаем случайное явление. Понятно, что оно со всей тщательностью исследовано (странный аттрактор). И доказано, что при решении этих уравнений часто возникают неопределенности. Например, деление на ноль, как в предыдущем примере. Вычисляя вручную, мы могли бы найти этот казус и остановить дальнейшее решение. Но компьютер вычисляет всегда с некоторой погрешностью (число знаков после запятой ограничено) и легко пропускает эту ошибку.

Назад Дальше