Польза люфтов в системах управления может быть продемонстрирована хотя бы на примере знакомой всем автомобилистам системы рулевого управления. На заре автомобилестроения соединение деталей в системе рулевого управления было жестким, лишенным люфтов (цепным или шестеренчатым). В результате такого конструктивного исполнения каждая выбоина на дороге (а дороги в то время были чаще всего брусчатыми) моментально отдавалась в рулевом колесе, вызывая у водителя автоматную реакцию - попытку сопротивления действию силы, вращающей колесо. Однако время задержки реакции оказывалось велико по сравнению с длительностью воздействия ударной нагрузки, и водитель прилагал компенсационное усилие уже на другом участке дороги, где направления компенсационного усилия и силы, вращающей рулевое колесо в результате следующего соударения, могли совпасть, что часто и случалось на практике. Управление автомобилем в то время требовало значительной физической силы и хороших навыков. Многие обращали внимание на то, как странно (по нынешним понятиям) вели себя на дороге старинные автомобили в кадрах кинохроники - они непрерывно совершали какие-то бессмысленные резкие зигзагообразные маневры на дороге, но мы-то знаем, в чем тут дело. Лишь в результате ряда усовершенствований (применение остроумно реализованных автоматов удержания прямолинейного направления движения за счет наличия углов развала и схождения) задача удержания рулевого колеса автомобиля существенно упростилась. Но главным здесь было изобретение рулевой трапеции, устроенной так, чтобы в ней обеспечивался люфт, позволяющий гасить незначительные удары и вибрации, возникающие при езде по дороге. Сейчас в правилах дорожного движения записано, в каких пределах должен обеспечиваться люфт в системе рулевого управления автомобиля.
Однако вернемся от проблем социальных и автомобильных к проблемам, рассматриваемым современной кибернетикой. Естественным продолжением исследований в области кибернетики стало возникновение таких теорий как теория распознавания образов, теория информации, теория искусственного интеллекта, кибернетической (математической) лингвистики и иных направлений, в основу которых заложено рассмотрение информационных процессов, связанных с управлением, целеполаганием, процессами возникновения и управления знаниями. В створе кибернетических наук зародилось весьма популярная в настоящее время технология нейросетевой обработки и анализа данных. Таким образом, мы приходим к утверждению, что на сегодня большая часть технологически реализованного аналитического инструментария базируется на принципах, сформулированных в рамках кибернетического подхода. Однако, как будет показано далее, человечество постепенно входит в эпоху, когда кибернетические подходы перестают быть единственным поставщиком технологий для аналитики - уровень развития кибернетических технологий завершает процесс создания платформы для начала внедрения технологий, основанных на теории систем и системного анализа, построения кибернетических систем высших порядков.
К числу разделов кибернетики, представляющих особый интерес для аналитики, несомненно, относится теория распознавания образов. Это направление получило развитие на самых ранних этапах развития кибернетики - без этого было невозможно решить задачи обеспечения реакции автомата на изменение ситуации (как некоторой специфической совокупности сигналов, поступающих от рецепторов). Так, уже на этом этапе теория распознавания образов, пусть пока формально, но оказалась связана с распознаванием ситуаций. Вначале распознавание было наиболее тесно связано с распознаванием графических образов в технических системах, но при наличии устойчивой тенденции к кибернетическому рассмотрению общества это не могло не привести к возникновению специфического направления - распознавания ситуаций и в сфере управления организационно-техническими и социальными системами.
Наиболее интенсивно методы распознавания образов используются на этапе, когда данные, собранные и прошедшие первичную обработку, приводятся к единому формату представления, что позволяет использовать для их отображения и анализа нормализованное метрическое пространство признаков (это означает, что в таком пространстве признаков введены метрики, обеспечивающие возможность измерения степени близости полученных результатов к неким эталонам). В этом случае близость к заданным эталонам указывает на возникновение ситуации, полностью или в некоторых деталях сходной с эталонной, по тем или иным причинам выделенной из числа прочих возможных. В настоящее время все чаще для решения таких задач используются методы, ранее использовавшиеся для распознавания изображений, однако применяемые не после отображения, а на этапе работы с внутренним представлением данных в системах автоматизированной обработки.
Как видим, кибернетические методы широко используются для анализа данных, построения моделей объектов и систем, распознавания ситуаций, синтеза организационной структуры информационно-аналитических подразделений и для многих других аналитических приложений. Ранее мы указывали, что методы кибернетических исследований тесно связаны с методологией системного анализа и границу раздела между ними определить крайне сложно. Тем не менее, в рамках нашего повествования такую границу мы проведем здесь.
Системный анализ
При объяснении феномена общности, приведшего к зарождению общей теории систем и системного анализа, можно сослаться на то, что исследователи чрезвычайно ограничены в средствах формализации и вынуждены выбирать сходный математический аппарат для обозначения природных явлений и процессов совершенно разного происхождения. Однако, это не совсем так (конечно, многое зависит от математического кругозора ученого) - дело в том, что современная математика достаточно богата разнообразными абстрактными объектами и инструментами формализации и способна предоставить исследователям все то, что может им потребоваться для представления результатов научных изысканий. Но, тем не менее, одни и те же зависимости, обратные квадрату расстояния, описывают изменение напряженности электромагнитного поля на некотором удалении от точечного носителя заряда, силу ударной волны на удалении от эпицентра взрыва, одинаковые дифференциальные уравнения описывают движение жидкостей, тока, переноса тепла в электро- и теплопроводных средах, иначе говоря, слишком много "случайных" совпадений. Даже наоборот, по мере развития специальных разделов математики, возникших в результате развития кибернетики, информатики, теории игр, управления, аксиоматической теории принятия решений, факторного анализа, "нечеткой" математики, становится очевидным наличие объективных закономерностей, определяющих сходство многих внешне различающихся феноменов.
Использование этого знания давало гипотетическую возможность на некоторых этапах исследований, проводимых в междисциплинарных областях, абстрагироваться от тех особенностей исследуемых систем, которые были несущественны с точки зрения решаемой задачи. Преимущества, которые могло дать использование подобного подхода, были очевидны. Однако от догадки до знания дистанция достаточно велика. Предположение Л. фон Берталанфи было лишь первым шагом на пути к созданию стройной научной теории, способной принести реальную пользу при решении конкретных задач теоретических и прикладных исследований. Отсутствие единой теоретической платформы, роль которой ранее исполняла механика Ньютона, тормозило развитие науки, а потребности практической деятельности стали наталкиваться на ограничения методологического плана (в этом-то и проявляется кризис науки). Поскольку общей концепции устройства мира синтезировано так и не было, а заключения о природе всего сущего наука дать была неспособна, постоянно наталкиваясь на технологические ограничения, ученые во многих отраслях вынужденно перешли на макроуровень. Этот подход оказался весьма продуктивным - все чаще в системах различной природы стали обнаруживаться закономерности, указывавшие на наличие чего-то общего, судя по всему, вызванного общностью фундаментальных принципов организации всех систем от самого нижнего уровня агрегации до самого высшего.
По мере углубления исследований росла убежденность в том, что структурный подход к анализу систем чрезвычайно эффективен и позволяет, отказавшись от детального изучения конкретных физических механизмов реализации той или иной конструкции, успешно решать многие задачи как теоретического, так и практического плана. Установка А.А.Богданова, настаивавшего на том, что "структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин" в результате чего многие "задачи могут решаться способами, аналогичными математическим" находила все больше подтверждений. В науке начался переход от изучения динамики элементов к изучению динамики структур, где отношения были более наблюдаемы и предметны.
Однако поскольку предметные области, в которых осуществлялись исследования в рамках методологии общей теории систем, традиционно различались (именно типом элементов систем), постольку в рамках общей теории систем сформировалось несколько направлений, прижившихся в различных отраслях: в экономике, политике, военном деле, экологии, социологии, демографии, ряде разделов медицины, и многих других.
На первых этапах общая теория систем, развивавшаяся в створе философских наук, оставалась предметом отвлеченных дискуссий, но по мере ознакомления специалистов-практиков с ее методологией, преимущества новых подходов стали очевидны. Там, где возникала потребность в создании и изучении сложных систем (в том числе - организационных и организационно-технических), использование методов системного анализа приносило ощутимую пользу. Особенно ценным было то, что методы общей теории систем позволяли выявить потенциальные источники противоречий, способных привести к снижению эффективности функционирования или самопроизвольному распаду системы. В ходе работ, связанных с проектированием больших человеко-машинных систем (что на тот момент было особенно востребовано при проектировании систем военного назначения) постепенно сформировалось специфическое направление общей теории систем, получившее наименование системный анализ.
Прежде, чем продолжить разговор о системном анализе, следует определиться с терминологией. Определение любой научной дисциплине может быть дано различными способами: по цели исследования, по объекту (предмету) исследования, по методу исследования и по субъекту исследования.
Определение по цели исследования. Системный анализ - это вид целенаправленной исследовательской деятельности, осуществляемой с целью создания оптимального по форме, содержанию, а также уровню детализации и формализации представления имеющихся знаний о сложных системах, являющихся предметом интересов исследователя.
- Определение по предмету исследования. Системный анализ - это отрасль научного знания, предметом изучения которой являются наиболее общие закономерности процессов возникновения (создания), существования (функционирования), распада (разрушения) сложных систем, процессов зарождения, развития и разрешения противоречий, а также закономерности синтеза целей в сложных системах, определяемые структурой, характером и динамикой связей между их компонентами.
Определение по методу исследования. Системный анализ - это вид комплексного исследования, использующего в интересах достижения цели методы структурной и функциональной декомпозиции сложных систем, опирающиеся на достижения философии, естественных и гуманитарных наук, а также математики и математической логики.
- Определение по субъекту исследования. Системный анализ - это вид исследовательской деятельности, осуществляемой специалистами в области системного анализа, системотехники и системологии, применительно к некоторой сфере деятельности.
Чтобы понять сущность системного анализа, на начальном этапе лучше прибегнуть к нестрогим определениям, например, системный анализ - это: "предпроектная стадия в разработках и предмодельная стадия в научных исследованиях", "дематематизированная кибернетика", "формализованный здравый смысл", "когда сначала думают, а потом делают" и тому подобные афористичные фразы. Все эти определения тем или иным образом указывают на связь системного анализа с принятием управленческого решения - неважно в какой отрасли.
Системный анализ может рассматривать в принципе любые типы систем и объектов, представляя объект исследования в качестве системы (в этом сущность его метода), в том числе и сложной. Однако оптимизация процесса исследования не есть главная задача системного анализа, первой и главной задачей системного анализа является получение модели предельно адекватной объекту исследования. А уж далее - на последующих этапах исследования - с применением методик системного анализа могут быть спланированы модельные, полунатурные и натурные эксперименты, исследованы поведенческие реакции исследуемой системы (методом задания изменений внешних воздействий), получены искомые модели поведения и перенесены на реальный объект исследования.
В предыдущем подразделе мы указывали, что исследования в области общей теории систем и кибернетики в СССР в первые годы после их зарождения по идеологическим соображениям были запрещены. Однако, по мере роста сложности создаваемых человеком систем, использование методов системного анализа стало объективной необходимостью, что по прошествии времени было признано и идеологическим руководством СССР. Со второй половины 1950-х методология системного анализа получила свое развитие и в советской науке. Характерно, что отечественные ученые быстро наверстали накопившееся в методологической области отставание, что было обусловлено высоким уровнем их теоретической подготовки и спецификой образовательной системы государства. Быстрому развитию и внедрению системного подхода в практику теоретических и прикладных исследований способствовали также сильные традиции междисциплинарных исследований, характерные для русской науки начиная с времен Д.И. Менделеева, В.В. Докучаева, В.И. Вернадского, А.Л.Чижевского и многих других. Уже в 1970-х-80-х годах специалисты в области системных исследований готовятся в большинстве ведущих вузов СССР (таких, как Московский и Ленинградский Государственный университеты, Московский физико-технический институт, Ленинградский политехнический институт и многих других). Выпускники этих вузов - инженеры-системотехники - становятся одной из наиболее востребованных категорий специалистов - это не удивительно, ведь в стране шло повсеместное внедрение электронно-вычислительной техники, автоматизированных систем управления производством (в том числе - и таких сложных, как единая система энергоснабжения страны), то есть - те самые сложные человеко-машинные системы, большие социально-экономические и экологические системы. Ведущие научные коллективы объединяются во Всесоюзный институт системных исследований АН СССР (ВНИИСИ АН СССР), а ныне - Институт системного анализа РАН (ИСА РАН).
В этот период развитие системного анализа фактически привело к формированию иной научной дисциплины - некоего "обогащенного" системного анализа, в котором нашли отражение не только комплекс исходных идей, но и аппарат синтезированный в рамках смежных отраслей науки. В числе научных теорий, пополнивших своими методами методологический арсенал системного анализа, следует упомянуть теорию исследования операций, теорию рефлексивного управления и ряд других. Особенно примечательным в этом отношении является использование в системном анализе теории выбора и принятия решений, включающей в качестве своей основной составной части теорию предпочтений и полезности. Теория выбора и принятия решений прошла большой путь от концепции полезности в античной философии до современных методов многокритериальной оптимизации и оценки эффективности, существенно опирающихся на положения системного анализа, связанные с понятием цели. Следует отдать дань уважения классикам и основателям теории выбора - итальянскому экономисту В. Парето (в начале XX в. сформулировавшего "принцип наименьшего из зол") и выдающемуся математику фон Нейману (в 1930-40-е гг. разработавшему основы теории игр). Большой вклад в развитие системной концепции и системного анализа в их современном виде внесли академики В.Г. Афанасьев, Д.М. Гвишиани, С.В. Емельянов, Н.Н. Моисеев, Г.С. Поспелов и другие советские ученые.
Системный анализ интенсивно заимствует и адаптирует к решению прикладных задач математические методы, разработанные в рамках исследований в области кибернетики, теории массового обслуживания, термодинамики, статистической радиотехники и других научных отраслей (в том числе и общественных наук). Появление вычислительных машин также способствовало реализации методологии системного анализа, ибо подавляющее большинство математических задач, решаемых в рамках исследований системного характера, не имеют аналитических решений и разрешимы только численными методами. Наиболее распространенным классом задач системного анализа являются задачи оптимизационного типа, связанные с определением экстремумов, решением систем линейных и нелинейных дифференциальных уравнений, задачи вариационного исчисления. Особенно часто эти методы используются при построении систем, обеспечивающих рациональное распределение ресурсов между группами взаимосвязанных процессов-потребителей для решения некоторого комплекса задач. При этом использование вычислительной техники позволяет осуществлять не только решение расчетных задач, но и осуществлять синтез имитационных моделей с применением специальных языков моделирования процессов и явлений. Речь идет о развитии особого раздела математики - дискретной математики, адаптированной дискретному характеру систем и наблюдений. Однако однозначной взаимосвязи между методологией системного анализа и конкретным типом математического формализма не существует. Выбор конкретных методов - это отдельный вопрос, решение которого в большей степени связано со спецификой предметной области. Характерно, что системные методы оказываются эффективными и на этапе выбора формальной системы для представления модели и тех численных методов, которые будут использоваться при реализации вычислений.