1.1 Философия, логика, семиотика
Вот что интересно: если большинство наук распространяли свои открытия по схеме "от избранных к избранным и лишь потом - к широким массам", то с аналитикой все обстояло иначе - здесь работала иная схема - "от избранных к широким массам и лишь потом - к избранным". Дело в том, что многие ученые и практики, работавшие в сфере аналитики, считали своим долгом распространение аналитических технологий в массы и вели активную публицистическую работу, но массовая культура всячески способствовала отторжению тех идей, пропаганде которых эти люди посвятили свои жизни - в результате аналитика оказалась востребованной лишь в элитных кругах, замыкающихся на решение проблем управления обществом, бизнесом, вооруженными силами. К числу таких ученых-просветителей могут быть отнесены многие философы античности, средневековья и новейшей истории.
Своим зарождением философия обязана первым донаучным мировоззренческим системам, таким, как мифы, эпос, религиозно-этические мировоззренческие системы. Мифологическое мышление не поднималось до понятийного уровня, концентрируясь на символической интерпретации мира и человека. Интересно, что эта особенность мифов была отмечена еще Платоном считавшим, что миф противопоставлен логосу и является образцом эйдоса (учения о долженствующем), художественной иллюзией. Но, тем не менее, на начальном этапе становления и развития философских систем в них превалировали мотивы, связанные с человеком и его местом в общественном устройстве, в том числе подробному рассмотрению подвергались проблемы этического плана.
Однако по мере развития методологического и понятийного аппарата на первый план стали выдвигаться проблемы, связанные с происхождением всего сущего - так называемый основной вопрос философии, в упрощенной формулировке известный, как вопрос "Что первично?". Относительно ответа на этот вопрос философские школы разделились на два лагеря: идеалистический и материалистический. В рамках этих крупнейших школ возникло множество течений, различающихся как степенью последовательности при ответе на основной вопрос, так и спецификой методологического аппарата, использующегося при построении аргументации.
Поскольку одной из древнейших традиций философии является ее демократизм, постольку искусство ведения дискуссий между приверженцами различных философских школ и течений естественным образом привело к зарождению таких наук, как логика (как искусство анализа аргументации) и риторика (как искусство использования языковых средств для построения аргументации). При этом риторические приемы, используемые для синтеза аргументации нередко строились с учетом психологических особенностей восприятия аргументов.
Оба научных направления в конце XIX - начале XX вв. получили мощное развитие. Развитие логики, на протяжении многих веков своего развития тесно связанной с математическими дисциплинами, привело к зарождению комплекса наук о знаковых системах, в первую очередь - семиотики. Риторика же стала фундаментом для зарождения психолингвистики, нейролингвистического программирования и ряда других научных направлений, исследующих специфику воздействия языковых средств на потребителей сообщений. Научные направления, обязанные своим происхождением риторике, представляют собой комплексный инструментарий управления моделями мира субъекта целеполагания. Именно аналитики оказываются в числе тех, кто первыми испытывает на себе действенность манипулятивных стратегий, разработанных в рамках этих дисциплин (речь здесь не идет о тех исследованиях, которые ведутся в интересах изыскания путей решения задач, связанных с излечением различных психических нарушений, снятием стрессов и т. п.). В рамках этих дисциплин широко используются методы рефлексивного анализа, контент-анализа - по существу те же методы исследования, которыми достаточно широко пользуются профессиональные аналитики, однако с рядом нюансов, знание которых способно принести пользу при поиске признаков запуска манипулятивных сценариев в потоке анализируемых сообщений. Сам факт выявления таких сценариев весьма информативен, поскольку этап манипуляции или дезинформации обычно предшествует крупномасштабным акциям, направленным на изменение приоритетов в политической, экономической сферах жизни общества и/или в сфере социального обеспечения.
Таким образом, три базовых научных дисциплины, вошедших в данный модуль - философия, логика и семиотика (наука о закономерностях построения и использования знаковых систем) - образуют органическое единство и их изолированное рассмотрение едва ли целесообразно. Использование методологического базиса первых двух из перечисленных научных дисциплин является основой и традицией ИАР, третья же - семиотика - в ее современном понимании сформировалась относительно недавно - в середине XIX в., хотя многие из ее основ были заложены еще в средневековье.
Философия
Однозначно утверждать, что вопросы, связанные с методологией ведения ИАР, наибольшее развитие и освещение получили в той или иной философской школе или течении, нельзя. Более того, общепризнанно, что многие основополагающие методы и принципы ИАР были сформулированы представителями различных философских школ от древности до современности. В ряду выдающихся философов, чей вклад в развитие методологии ИАР нельзя не упомянуть - Сократ, Аристотель, Р. Декарт, И. Кант, Г. Гегель, К. Маркс, В.И. Ленин, А.А. Богданов, Б. Рассел и многие другие. Завершая этот перечень, невольно испытываешь чувство вины перед множеством ученых, государственных и военных деятелей, писателей, инженеров и представителей иных отраслей деятельности - здесь не упомянутых, но также внесших весомый вклад в развитие аналитики. Но даже этого перечня достаточно для того, чтобы понять, насколько неоднородны в философском плане истоки аналитики.
Следует упомянуть и особое философское течение, выделившееся в философии (вне зависимости от их принадлежности к материалистической или идеалистической школе) - агностицизм. Основой для единения представителей этого философского течения является постулат о непознаваемости мира. Влияние этого философского течения на развитие аналитики выразилось в том, что в результате противостояния его идеям было сформулировано немалое количество продуктивных идей, связанных с учетом влияния случайных факторов, сказывающихся на качестве аналитических выводов.
Современный период в развитии философии, начавшийся в XIX веке и продолжающийся по настоящее время, оказался чрезвычайно продуктивен. Бурное развитие философии было спровоцировано целым рядом масштабных перемен как в науке, так и в общественной жизни. Начиная с этого времени, на фоне ломки многих естественнонаучных постулатов и острого противостояния мировоззренческих и социальных систем, стали активно развиваться философские теории, непосредственно связанные с аналитикой. Именно в этот период были сформулированы философские теории, определяющие современный облик аналитики.
Так, например, работы философов различных школ и течений в области теории познания выступили в качестве той теоретической основы, закономерным результатом развития которой стало формирование практически всего комплекса наук об информации.
Сильный импульс к развитию и становлению информационных наук дали работы философов, придерживавшихся традиции логического позитивизма в философии. Принципы логического позитивизма в ряде отраслей информатики превалируют и по сей день (по крайней мере, в большинстве классических подходов к построению аналитических информационных систем). Практически, в рамках этого подхода реализовано абсолютное большинство современных экспертных систем.
Мощнейший пласт аналитики был разработан К. Марксом и Ф. Энгельсом в рамках диалектического материализма и материалистической теории познания. Безусловно, диалектика не была изобретением последних - как большинство фундаментальных теорий, идея диалектики долго зрела в научных кругах. Платон, Аристотель, Декарт, Кант, Гегель - все они оказали мощное влияние на развитие диалектической логики и диалектики как науки о наиболее общих закономерностях развития природы, общества и мышления.
Несмотря на то, что о диалектическом методе (ДМ) говорится практически в каждом учебнике по философии, их авторы избегают детального описания принципов ДМ, ограничиваясь указанием лишь наиболее общих - принцип материального единства мира, принцип развития, принцип всеобщей взаимосвязи явлений действительности.
Аналитическая же практика требует детализации принципов диалектического метода. В результате сравнительного анализа различных источников, в которых рассматривается ДМ, авторы книги остановились на следующем перечне принципов ДМ:
- принцип активности субъекта познания;
- принцип всесторонности рассмотрения объекта;
- принцип объективности;
- принцип взаимосвязи данного объекта с другими объектами и явлениями;
- принцип системности (элементность, динамичность и взаимодействие, гиперкомплексность, структурность, эмергентность, иерархичность);
- принцип детерминизма (причинно-следственные взаимосвязи);
- принцип рассмотрения объекта в развитии;
- принцип единства формы и содержания;
- принцип единства анализа и синтеза;
- принцип сравнения и аналогии;
- принцип единства дедукции и индукции;
- принцип восхождения от абстрактного к конкретному;
- принцип единства рассмотрения количественных и качественных характеристик;
- принцип познания сущности явления через выявление противоречий;
- принцип обнаружения новых тенденций (через закон отрицания отрицания);
- принцип конкретно-исторического рассмотрения (единство исторического и логического);
- принцип идеализации;
- принцип единства рассмотрения объектов через категории общего, единичного и особенного;
- принцип единства теории и практики в процессе познания.
Данные принципы ДМ вытекают из содержания диалектики как научной системы, включающей гносеологию (теорию познания), теорию развития и диалектическую логику, а также из законов, основополагающих принципов диалектики и ее категорий.
Отсутствие такой детализации не позволяло обучаемым увидеть практическую значимость ДМ и философии в целом, в то время как во всем мире ДМ широко используется различными аналитическими школами. Даже на простейший вопрос: "Что значит мыслить диалектически?" абсолютное большинство окончивших вузы не могло дать вразумительного ответа. Из этого можно сделать вывод, что преподавание философии было (и часто остается) схоластическим и оторванным от реальности.
Методы диалектики нашли широкое применение при анализе отношений в предметной области, выявлении центров неформализуемых аналитическими методами (эвристических) зависимостей, а также при построении моделей системной динамики в базисе анализа противоречий. Материалистические традиции в философии отразились в тенденции включения в рассмотрение лишь тех сущностей, которые проявлены в материальной сфере (основание - материальная природа процессов, подлежащих измерению и управлению). Бихевиоризм привнес в информационные науки принцип "черного ящика", давший толчок таким плодотворным подходам, как использование эвристических правил при построении экспертных систем, синтез нейроподобных сетей и применение методов имитационного моделирования при решении задач оптимизации. Принцип индетерминизма выступил в качестве основы для построения систем, управляемых потоками событий и систем гибридного интеллекта. Общая теория систем выступила в качестве платформы для развития методологии системного анализа, ныне повсеместно применяемой при построении сложных аналитических систем, а также на этапе анализа предметной области.
Здесь перечислена лишь часть тех направлений философской мысли, которые обеспечили развитие информационно-аналитических технологий. Однако уже этот - неполный - перечень позволяет составить впечатление о том, сколь противоречивые походы образуют фундамент аналитики.
Логика
В одной из своих статей авторитетный отечественный ученый А.А. Зенкин, известный своими работами в области логики и теории систем искусственного интеллекта, заявил: "Лет тридцать тому назад ради спортивного интереса я начал коллекционировать различные "логики", используемые в современных логико-математических трактатах. Когда их количество перешагнуло вторую сотню, стало ясно: если логику можно выбирать "по вкусу" (или даже конструировать "по потребности"), то такое понятие, как "наука", становится здесь просто неуместным".
Возможно, что в качестве предисловия к подразделу, посвященному логике, как одному из основных методологических компонентов аналитики, эта фраза покажется не слишком уместной, но такой своеобразный старт позволяет взглянуть на логику несколько шире, нежели мы привыкли. Дело в том, что современная логика чрезвычайно многообразна и очень часто логические системы строятся в соответствии с конкретными задачами исследования. Соответственно, следует разделять классическую (аристотелеву) логику и, так называемые, неклассические или нетрадиционные логики. И, прежде, чем начать оперировать формальным аппаратом логики, необходимо определиться с тем, в рамках какого именно логического аппарата будут строиться рассуждения.
Долгое время логика развивалась в рамках философской науки и рассматривалась в качестве одного из ее разделов. Лишь позже, в связи с развитием математики и естественных наук, логика приобрела относительную самостоятельность.
В современной логике - как в ее философской ветви, так и в формально - математической - наблюдается все большая ориентация на прикладные проблемы, сопряженные с конкретными отраслями информационных технологий. Множество работ посвящено вопросам представления знаний в системах искусственного интеллекта, построения систем поиска данных, поиска логического вывода и т. п. Это свидетельствует о том, что по сложности решаемых логических задач практика (в первую очередь, благодаря активизации исследований в области прикладной математики, лингвистики, информатики и теории искусственного интеллекта) наконец-то "нагнала" долгое время опережавшую потребности практики теоретическую логику. Если аристотелева логика до конца XIX - начала XX века в целом отвечала потребностям практики, то, начиная с этого периода, исследования в области логики стали приобретать специфический характер, становясь откликом на потребности практической деятельности.
Памятуя классическое деление этапов решения задач: анализ и синтез (восходящее еще к Паппу Александрийскому), попытаемся определить, что именно понимается под аналитическим методом в логике. Классический подход состоит в том, что логика рассматривает аналитический способ как способ решения "снизу вверх": от формулы к аксиомам, а синтетический способ - как решение задачи "сверху вниз": от аксиом к выводимой формуле. Это позволяет рассматривать классификацию логических исчислений по степени привлечения в их рамках аналитического и синтетического подходов. Соответственно, все логические системы можно условно разделить на: "аналитические" системы - системы секвенциального исчисления, "синтетические" - аксиоматические системы, а также "смешанные" - системы натурального вывода.
Практика решения прикладных задач в области искусственного интеллекта показала ряд преимуществ аналитических и смешанных систем логических исчислений для задач представления знаний и построения выводов. Такая тенденция в сфере разработки и создания систем искусственного интеллекта наблюдается со времени опубликования работ С.Ю. Маслова - его идеи получили свое практическое воплощение и развитие в работах отечественных ученых В.К. Финна и Д.А. Поспелова, дополнивших и развивших положения его работ. В частности, было введено понятие квази-аксиоматических систем, система аксиом в которых обладает локальной областью определения и может подвергаться коррекции без переопределения всей системы аксиом, значимых для производства вывода в рамках целостной системы искусственного интеллекта. В настоящее время это направление интенсивно разрабатывается американскими специалистами в области построения искусственного интеллекта в рамках проектов министерства обороны, направленных на создание систем поддержки информационноаналитической работы.
Рассмотрим, какие именно практические потребности аналитики призвана решать логика. Здесь следует выделять два класса задач:
- задачи анализа рассуждений;
- задачи технологического обеспечения.
При решении задач анализа рассуждений логика выступает в качестве инструмента, с помощью которого устанавливается не "истина", как адекватность (т. е. соответствие) содержания рассуждений реальному миру, а факт их логической непротиворечивости (верификации рассуждений). Если построенная логическая система непротиворечива, то она для одной реальности или математической модели может быть адекватна и уже в силу этого истинна, а для некоторой другой - нет. Если же логическая система изначально противоречива, то разговора о ее адекватности чему бы то ни было (и истинности) в любом случае не может быть. Если говорить о естественнонаучных знаниях, то критерием их истинности является практика. Однако для того, чтобы логические методы могли быть применены для вывода истинных суждений о некой предметной области, она должна быть предварительно формализована и описана в виде некоторого набора суждений, поддающихся логическому анализу (эталонной модели фрагмента реальности). Методы логики могут быть также использованы для выявления противоречий в системе рассуждений и относительно этого эталона.
Задачи технологического обеспечения информационно-аналитической работы затрагивают проблемы использования логического аппарата для синтеза эталонных моделей предметной области и инструментария хранения и поиска данных. В том числе - для тех предметных отраслей, формализация в которых затруднена из-за действия комплекса ограничений объективного характера (например, естественно-языковых суждений, для которых характерны размытость границ состояний, полисемия /многозначность/ и иные явления).
К числу проблем, активно разрабатываемых в логике в настоящее время, относятся такие, как проблема построения логических систем, пригодных для решения задач формализации рассуждений на естественных языках, решения задач представления логики суждений или событий в условиях использования многозначных шкал, отображающих различную степень уверенности эксперта в достоверности факта, стадию изменения состояния между некими полярными исходами и т. п., для задач отображения развертки процесса во времени, отображения отношений не столько причинно-следственного, сколько временного плана (строгое предшествование, нестрогое предшествование и т. п.). Эти задачи, нетрадиционные для классической логики попали в центр внимания современной логики благодаря необходимости анализа больших массивов данных при моделировании рассуждений экспертов в рамках синтеза экспертных систем, систем искусственного интеллекта и иных приложений.