Таинственные явления природы и Вселенной - Минаков Сергей Игоревич 26 стр.


Если вокруг черной дыры на расстоянии ее гравитационного радиуса обозначить условную сферу, то мы получим некую физическую границу, не условную, а вполне реальную, называемую горизонтом событий, или сферой Шварцшильда, по имени ее первооткрывателя. Конечно, сфера Шварцшильда - это не экран из вещества. Это гравитационный экран. Все, что находится под горизонтом событий, принципиально недоступно наблюдению - гравитация не выпускает.

Согласно ОТО (а у нас, как мы знаем, нет причин сомневаться в ее правильности), ход времени зависит от силы тяжести. Чем массивнее тело, тем медленнее течет время на его поверхности. Вот мы сидим в нашем уютном звездолете, у иллюминатора, или даже дома, в нашем любимом кресле, у окна и наблюдаем черную дыру и ее окрестности. Мы бросаем взгляд на свои часы - и что же мы видим? По мере приближения к горизонту событий время любых событий будет замедляться. А для событий на границе сферы Шварцшильда время по показаниям наших часов останавливается вовсе.

В этом месте объяснений обычно приводят пример незадачливого путешественника, оказавшегося в окрестностях черной дыры.

Итак, есть путешественник (назовем его для определенности Петром), который отправляется к черной дыре. Есть его товарищ (мы станем звать его Павлом), который наблюдает за Петром с некоторого безопасного расстояния. Петр и Павел - апостолы науки. Что же они увидят, тот и другой?

Павел обнаружит, что скорость Петра по мере приближения к горизонту событий стремится к полному нулю. Он приближается к черной дыре все медленнее и медленнее, пока совсем не останавливается на линии горизонта. Далее, когда бы Павел ни поинтересовался, что же там делает Петр, он всякий раз будет отмечать, что с Петром ничего не происходит, он все висит и висит неподвижно на границе сферы Шварцшильда. Павел так и не увидит, как Петр пересечет горизонт! Правда, Павел увидит, как Петр будет все сильнее и сильнее отливать красным, как Солнце на закате, затем образ Петра будет меркнуть, тускнеть, пока вовсе не исчезнет.

Теперь посмотрим на происходящее глазами Петра. Приближаясь к черной дыре, он не наткнется ни на какие границы и без труда пересечет горизонт событий. Ну а дальше… Скорее всего, еще до того, как наш храбрый, но некомпетентный Петр увидит что-нибудь интересное, он будет разорван на части или растянут, благодаря так называемому приливному эффекту. Дело в том, что гравитационное поле разнится в зависимости от расстояния до массивного объекта: часть, которая ближе к его центру, притягивается сильнее. Чем плотность объекта больше, тем гравитация сильнее и тем больше разница между гравитационными силами, действующими, скажем, на ноги и голову нашего Петра. Черная дыра очень плотная. Следовательно, ее гравитация очень велика и эффект из-за этой разницы будет существенен на расстояниях, которые сравнимы с ростом человека. Да, да, наш Петр просто превратится в спагетти! Для приливного растяжения в черной дыре даже существует особый термин - spaghetification ("спагеттификация"). Более того, расстояние, на котором уже существенен приливной эффект, по мере продвижения к центру черной дыры очень быстро уменьшается. Бедный Петр все равно "спагеттизируется", если не целиком, от носа к пяткам, то, так сказать, "помолекулярно"; он будет похож не на одну большую макаронину, а на порцию спагетти. Но ему это уже будет безразлично.

Но главный драматический момент состоит в том, что ни поведать о своих впечатлениях от увиденного под горизонтом черной дыры, ни позвать на помощь наш бедный Петр не сможет. Принципиально не сможет: никакая информация не способна преодолеть горизонт черной дыры в обратном направлении, от центра! Ну, если только носитель информации будет квантовый - но это уже по части научной фантастики.

И все же, перед тем как "спагеттизироваться", что же Петр увидит? По мере приближения к черной дыре он заметит, что вид неба странным образом искажается, как будто оно уменьшается в размерах и искривляется. Затем абсолютная чернота черной дыры начнет перекрывать обзор. Так Петр пересечет то, что называется "фотонной сферой". На этом расстоянии от горизонта событий свет еще не втягивается в черную дыру, но и не может уже от нее оторваться вследствие гравитации. Фотоны света крутятся вокруг черной дыры по орбите, подобно орбитальному спутнику Земли. Поэтому, глядя вперед или немного в сторону, Петр мог бы видеть собственный затылок: свет, отраженный от его затылка, обернется вокруг черной дыры, вернется обратно и попадет на его сетчатку. Затем, по мере приближения к центру, Петр увидит, как позади него все небо уменьшается в размерах и стягивается в точку. Впрочем, если черная дыра была достаточно большой, то на горизонте событий Петр может довольно сносно и даже комфортно провести еще несколько часов. Затем станет очень больно.

А что будет потом? Никто точно не знает. Конечно, Петра уже не будет в живых. Но элементарные частицы, из которых состояло его тело на квантовом уровне, могут появиться где-нибудь в нашей вселенной или в какой-то другой вселенной классического типа, или утонуть в море инфлирующего вакуума. Некоторые ученые считают, что если черная дыра движется, она может породить то, что в астрофизике называется wormholes - "червоточина". По сути, червоточина - это магистраль квантового тунеллирования, о котором речь шла в предыдущей главе. Частицы, из которых раньше состоял Петр, могут внезапно оказаться в точке пространства, где они никак не могли бы оказаться, двигаясь по нему даже со скоростью света! Возьмем обычный лист бумаги и отметим самые далекие друг от друга точки. Но если мы согнем наш лист и приложим эти точки одна к другой, расстояние между ними сократится до нуля! Что-то подобное происходит и в случае с червоточиной.

Все без исключения черные дыры неразличимы: каковы бы ни были начальные условия их формирования, в итоге всегда одно и то же. Любая черная дыра характеризуется всего лишь тремя параметрами: массой, угловым моментом (спином) и электрическим зарядом. И все, что в нее проваливается, тоже утрачивает индивидуальные характеристики.

Если еще 20–30 лет назад черные дыры считались изящной теоретической спекуляцией, а в их реальном существовании было позволительно сомневаться, то сегодня 99 % астрофизиков убеждены, что черные дыры уже открыты. К настоящему времени обнаружено свыше 20 рентгеновских объектов в маломассивных двойных системах, которые считаются кандидатами в черные дыры. Если же к этому списку добавить сверхмассивные черные дыры в ядрах галактик, то насчитаем их более трех сотен.

В некотором смысле черные дыры - создатели галактик, так как они тянут планеты и звезды к спиральному центру. У каждой галактики есть черная дыра, и иногда галактики сталкиваются вместе из-за гравитации более крупных черных дыр.

Все подобные объекты можно разделить на три типа: 1) черные дыры с массой от 3 до 50 солнечных масс, представляющие собой продукт эволюции массивных звезд; 2) сверхмассивные черные дыры в ядрах галактик, достигающие 106–109 масс Солнца; 3) так называемые первичные черные дыры, образовавшиеся на ранних стадиях Вселенной. Своим появлением на свет они обязаны локальным деформациям метрики пространства-времени в первые моменты после Большого взрыва, задолго до того, как зажглись первые звезды. Поскольку черные дыры постепенно "испаряются" (это доказал Стивен Хокинг), до наших дней могли дожить первичные черные дыры только с массой более 1012 кг.

Звезды - существа социальные

Звезды не распределяются в пространстве равномерно, а образуют более или менее компактные структуры - галактики. Те, в свою очередь, входят в состав скоплений и сверхскоплений, простирающихся на десятки миллионов световых лет. Наша галактика Млечный Путь является одним из таких звездных сообществ и насчитывает 200, а может быть, даже 400 млрд звезд.

В любой галактике принято выделять ядро, или балдж (от англ. bulge - "выпуклость, вздутие"), диск и галó (галактическую корону). Ядро представляет собой компактный сферический компонент, окружающий галактический центр. Масса его оценивается в 20 млрд солнечных масс. А в центре - сверхмассивная черная дыра с массой от двух до трех миллионов масс Солнца. Около центра галактики звезды располагаются очень плотно. Для сравнения: если в окрестностях Солнца на 50 кубических световых лет приходится всего одна звезда, то в центре Млечного Пути всего лишь в объеме, равном 3 кубическим световым годам, содержится примерно 10 тыс. звезд. По мере удаления от центра плотность звезд падает.

Более половины массы галактики (около 60 млрд масс Солнца) приходится на плоский диск, внутри которого выделяют тонкую и толстую часть. Поперечник галактического диска составляет 100 тыс. световых лет, или 30 килопарсек (30 кпк), а его толщина колеблется в широких пределах - от 300 до 3 тыс. световых лет. В области центра он тоньше, а к периферии заметно расширяется. Галактический диск неверно представлять себе как сплошную гомогенную структуру наподобие колеса: он распадается на спиральные рукава. Солнце расположено в 26 тыс. световых лет от центра галактики и совершает вокруг него полный оборот за 220 млн лет, преодолевая примерно 250 км/с. Иногда говорят, что один оборот вокруг центра - это галактический год, и выходит, что возраст Солнечной системы составляет 20 галактических лет.

Кроме плоского диска и центрального компонента в области ядра, галактика обладает сферическим гало, которое окутывает галактическую линзу наподобие облака и в основном состоит из разреженного горячего газа, звезд и темной материи. Помимо шаровых скоплений и одиночных звезд, в галактической короне обнаруживаются газовые облака и карликовые галактики.

Общепринятую классификацию галактик составил Эдвин Хаббл. Помните Эдвина Хаббла? Это он открыл и экспериментально показал, что галактики разбегаются, и значит, наша Вселенная расширяется.

Млечный Путь относится к числу спиральных галактик, которые обозначают буквой S (от англ. spiral). Все спиральные галактики состоят из сферического и плоского компонентов, то есть из ядра и диска, причем диск имеет выраженную спиральную структуру. Как правило, основных спиральных рукавов бывает два, но может быть и больше.

В зависимости от формы спиральных ветвей и размеров балджа внутри галактик типа S выделяют несколько подтипов: Sa, Sb, Sc и Sd. В этом ряду спиральные ветви становятся все более тонкими, а размер ядра уменьшается. Спиральные рукава тоже могут быть ориентированы по-разному: в одних случаях они начинаются непосредственно от ядра, а в других цепляются за концы бара - толстой звездной перемычки, пересекающей центральную часть галактики. В таком случае галактика попадает в категорию Sb (spiral + bar). Галактики с баром подразделяются на те же самые четыре подвида. Наш Млечный Путь вроде бы тоже обладает небольшой перемычкой, крайние точки которой отстоят на 3–4 кпк от центра, а по строению спиральных ветвей и размерам балджа занимает промежуточное положение между подтипами b и с.

Спиральных галактик больше других (свыше 50 %), а среди этих других принято выделять галактики эллиптические, линзовидные и неправильные. Эллиптические галактики почти не содержат межзвездного газа и не имеют плоского диска. По сути дела, они представляют собой одно сплошное ядро, форма которого варьируется в широких пределах: от практически идеального шара до эллипсоида различной степени сплюснутости. Хаббл присвоил им литеру Е (elliptical), а степень уплощенности выражал в арабских цифрах. Таким образом, туманность ЕО будет шаровидной галактикой, а Е7 приобретет форму веретена. Линзовидные галактики обозначаются латинской буквой L (от англ. lenticular - двояковыпуклый) и внешне весьма похожи на эллиптические, поскольку внушительное ядро преобладает над тонким звездным диском, внутри которого, как правило, не удается разглядеть никаких структурных образований. Неправильные галактики - это клочковатые рваные облака, заметно уступающие по массе галактикам других типов. Больше всего они похожи на бесформенные кляксы, внутри которых можно иногда обнаружить неустойчивые и короткие спиральные рукава. В классификации Хаббла они обозначаются как Ir или Irr (irregular - неправильные).

Помимо разнообразия форм, многие галактики обладают весьма заметной активностью. Они взрываются и сталкиваются, вытягивая из тел своих сестер длиннющие струи газа и звездного вещества, или, наоборот, сливаются в тесных объятиях наподобие половых клеток под микроскопом. Некоторые из них излучают в радиодиапазоне и выбрасывают из своих активных ядер мощные джеты протяженностью в несколько тысяч световых лет.

Взаимодействие галактик радикально меняет их структуру. Например, две спиральные галактики могут слиться, породив эллиптическую галактику, большие галактики проглатывают маленькие и так растут и "толстеют". Наш Млечный Путь - тоже результат слияния нескольких сравнительно небольших галактик. А через 2–3 млрд лет наша галактика, скорее всего, соединится с галактикой Андромеды, которая находится на расстоянии двух с половиной миллионов световых лет и сближается с нами со скоростью 120 км/с.

Между планетой и ее спутником возникает эффект приливного ускорения, который характеризуется замедлением вращения планеты вокруг собственной оси и изменением орбиты спутника. Так, каждое столетие вращение Земли замедляется на 0,002 с, в результате чего продолжительность суток на планете увеличивается примерно на 15 мкс в год, а Луна ежегодно удаляется от нас на 3,8 сантиметра.

Дети Солнца: такие разные родственники

Блуждающие Земли, или планеты

Если бы Вселенная исчерпывалась галактиками, звездами и прочими черными дырами, мы могли бы смело поставить здесь точку. Однако во Вселенной имеется еще нечто очень важное. Жизнь не может существовать где угодно, особенно если речь идет о сложных формах. А где может? На относительно малых и не светящихся собственным светом телах, которые обращаются вокруг звезд. Это планеты. На одном из таких небесных тел живем и мы с вами.

Слово "планета" в переводе с греческого означает "блуждающая". Древние греки еще за несколько веков до Рождества Христова заметили, что среди звезд есть такие, которые не стоят, как большинство других, на небосводе неподвижно, а выписывают на небесной сфере замысловатые кренделя. Античные астрономы знали пять блуждающих звезд: Меркурий, Венеру, Марс, Юпитер и Сатурн. Вместе с Луной и Солнцем они составляли космос античного мира, а сфера неподвижных звезд венчала этот стройный архитектурный ансамбль наподобие купола. Земля была центром всего этого мироздания.

Много позже, в Новое время, в XVIII–XX веках к списку планет добавились еще три: Уран, Нептун и Плутон - по планете в столетие. Эту троицу нельзя разглядеть невооруженным глазом, поэтому она была обнаружена сравнительно поздно - после изобретения телескопа. Уран открыл в 1781 году английский астроном Вильям Гершель, Нептун в 1846-м - француз Урбан Жозеф Леверье. А Плутон открыл Клайд Уильям Томбо из Америки, в 1930 году. Правда, сегодня некоторые ученые отказывают Плутону в праве называться планетой и помещают его в особую категорию карликовых планет или транснептуновых объектов. Но другие исследователи с этим не согласны.

Относительно размеров Солнца тоже существовали разные мнения. Наиболее отчаянные древнегреческие умы допускали, что оно может быть величиной с Афины, а один мудрец, дерзнувший предположить, что Солнце уж никак не меньше Пелопоннесского полуострова, был с позором изгнан.

В современной звездной номенклатуре Солнце занимает скромное место: желтый карлик, класс G. Однако его размеры все же вселяют уважение. Диаметр Солнца составляет около 1,4 млн км (диаметр Земли для сравнения - чуть больше 12 тыс. км), и в нем заключено 0,999 всей массы Солнечной системы. Среднее расстояние от Земли до Солнца - 149 млн км. Эту величину принято называть астрономической единицей (а. е.), и она служит для измерения межпланетных расстояний.

Солнце - одна из 200 или 400 млрд звезд, населяющих нашу галактику, расположенная вместе со своими девятью планетами в 26 тыс. световых лет от центра Млечного Пути, в одном из спиральных рукавов.

Сегодня каждый школьник знает, что вокруг чего вертится в небе. И все же, приглядимся к Солнечной системе повнимательнее. Есть так называемая земная группа - 4 планеты: Меркурий, Венера, Земля и Марс. Есть четыре газовых гиганта: Юпитер, Сатурн, Уран, Нептун. И во многом все еще загадочный Плутон. Но это не все. В состав Солнечной системы входят так называемые малые планеты, образующие пояс астероидов между орбитами Марса и Юпитера, а также кометы и метеоры, прилетающие с далеких ее окраин. Там, за орбитами Нептуна и Плутона, на десятки астрономических единиц простирается пояс Койпера - собрание карликовых планет, а также каменных и ледяных обломков различных форм и размеров. Еще дальше лежит огромное сферическое облако протопланетных тел, названное в честь голландского астронома облаком Оорта. Оттуда к нам приходят долгопериодические кометы. Наконец, у большинства планет Солнечной системы имеются естественные спутники (исключения - Меркурий и Венера). У Юпитера к настоящему времени насчитывается свыше 60 спутников, у Сатурна их 56, у Урана - 27, у Нептуна - 13, а у Плутона - 3. У Марса всего два спутника: Фобос и Деймос (что в переводе с греческого означает "страх" и "ужас"), а у нашей Земли только один. Но зато какой! Во-первых, Луна намного превосходит большинство спутников, уступая по размерам только трем крупнейшим спутникам Юпитера - По, Ганимеду и Каллисто - и спутнику Сатурна Титану. А во-вторых, Луна - свидетельница всех влюбленных, чем ни один спутник ни одной из планет Солнечной системы похвастаться не может!

Если весь кислород земной атмосферы превратить в жидкость (это возможно при –192 °C), то с учетом увеличения его плотности в 800 раз по сравнению с газообразным состоянием вся поверхность земного шара может быть покрыта слоем жидкого кислорода толщиной свыше 2 метров.

Меркурий

Меркурий обегает вокруг Солнца всего за 88 суток, и его год, таким образом, в четыре с лишним раза короче земного. Орбита Меркурия напоминает по форме сильно вытянутый эллипс, чем заметно отличается от почти круговых орбит всех других планет Солнечной системы. Эллиптичность орбиты небесного тела принято выражать через эксцентриситет - отношение большой и малой полуосей орбиты. В случае Меркурия это 0,2, тогда как эксцентриситет земной орбиты в 10 с лишним раз меньше: примерно 0,017. В результате расстояние до Меркурия от Солнца меняется в широких пределах - от 46 до 70 млн км, составляя в среднем 58 млн км. Кроме того, орбита Меркурия ощутимо наклонена к эклиптике (эклиптикой называют плоскость земной орбиты): угол наклона составляет 7° (эти величины больше только у Плутона - 0,25 и 17° соответственно).

Из-за близости к Солнцу Меркурий получает в шесть раз больше солнечного света на единицу площади, чем Земля. В перигелии - точке минимального удаления от Солнца - температура его освещенной поверхности составляет 430 °C, а в афелии - точке максимального удаления - опускается до 290 °C. На ночной стороне планеты температура падает до –170 °C. Поскольку средняя плотность Меркурия почти такая же, как у Земли, у него должно быть железное ядро, которое, по расчетам, занимает почти половину объема планеты.

Назад Дальше