Таинственные явления природы и Вселенной - Минаков Сергей Игоревич 30 стр.


Следует особо подчеркнуть, что геотектонические этапы не совпадают с эрами, выделенными на основании изучения истории органической жизни планеты.

После окончания очередного геотектонического этапа, часто завершавшегося горообразованием, одни геосинклинальные зоны вновь вовлекались в прогибание, другие же длительное время оставались как бы законсервированными - становились платформами. Такие зоны получили название по времени последнего этапа прогибания. Геосинклинальные зоны, прекратившие прогибаться и смятые в складки к концу каждого этапа, стали называться, соответственно, каледонидами, герцинидами и альпидами.

Вообще-то, геотектоническая стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с палеозойской эры, то есть примерно 0,5–0,3 млрд лет назад, Земля вступила в новую стадию эволюции, которую можно именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую (5–7 км) океаническую.

Главной особенностью процесса океанообразования является то, что, начавшись, вероятно, в пределах относительно узкой, может быть, линейной зоны, он затем постепенно расширялся, захватив к настоящему времени пространство, превышающее площадь материков.

Каковы условия, определившие начало процесса океанообразования, остается пока неясным. Несомненно лишь одно: в основе этих процессов лежит разогревание Земли в результате радиоактивного распада.

Обширные глубоководные океанические равнины когда- то были платформами. Поэтому геологи называют их талассократонами (опустившимися платформами). О сходстве океанических равнин с платформами материков свидетельствуют их огромные размеры и отсутствие в них каких-либо активных тектонических движений, например сейсмической деятельности.

Протяженные полосы мелководий и островов в океанах (таких как, например, подводный Гавайский хребет) - это, возможно, некогда существовавший геосинклинальный пояс. Не случайно именно к этим зонам относится большинство случаев нахождения в океанах кислых пород (гранитов).

Океаническую стадию следует рассматривать как завершение гигантского мегацикла в истории Земли, длившегося 4–5 млрд лет. Вода, наконец, была "выжата" на поверхность. Может быть, впервые за всю жизнь земной коры слагающие ее химические элементы расположились в закономерной последовательности: вверху самые легкие, ниже тяжелые и плотные - вода, под ней кремнезем, еще ниже алюмосиликаты и внизу силикаты с высоким содержанием магния и железа. Теперь мы можем посмотреть на геологическую историю Земли в целом.

А что дальше? В дальнейшей геологической эволюции нашей планеты, по-видимому, будет продолжаться рост океанов за счет континентов. Материки со временем будут почти полностью поглощены Мировым океаном. Нам, правда, слишком пугаться не стоит. Процесс заливания континентов океанами идет крайне медленно даже по меркам геологического летосчисления, и для полного уничтожения суши потребуются еще сотни миллионов лет.

Самый большой водопад на планете находится под водой. В Датском проливе, между Исландией и Гренландией, на протяжении 200 км каждую секунду с высоты в несколько километров в Атлантику сбрасывается 5 млн м воды. Холодная, и поэтому плотная и тяжелая, вода Северного Ледовитого океана падает в теплой воде Атлантического океана как в воздушной среде. Для сравнения: самый полноводный "наземный" водопад - Гуаира в Бразилии - сбрасывает "всего" 13 тыс. м воды в секунду.

Небесные камни

Иногда космические тела падают на Землю. Чаще всего они бывают достаточно малыми, чтобы не приносить значимых последствий для обычного устройства земных дел. Но они бывают и такого размера, что под угрозой оказывается само существование жизни на Земле. Последствия в таком случае имеют планетарный (или планетарно значимый) масштаб и всегда оказываются потрясением, испытанием для всего живого. Они всегда катастрофичны! Некоторое представление о древних космических катастрофах дает обследование наиболее крупных метеоритных кратеров, сохранившихся до наших дней.

Следами падения крупных метеоритов на земной поверхности являются необычные кольцевые геологические структуры. Их называют "астроблемы" - звездные раны. Внутри астроблем наблюдаются радиальная деформация пластов раздробленных пород, необычные минералы и другие признаки, свидетельствующие о мощном ударном взрыве. Сейчас на Земле обнаружено более 170 таких кольцевых структур - мест падения гипотетических гигантских метеоритов.

Правда, здесь есть некоторая неопределенность. Дело в том, что кольцевые структуры во многом сходны с нарушениями земной поверхности, возникающими после некоторых вулканических извержений, - вулканическими кальдерами. Поэтому вопрос о том, является данная кольцевая геологическая структура результатом падения метеорита или вулканического извержения, в каждом отдельном случае специально изучается.

Происхождение некоторых кольцевых образований на Земле остается дискуссионным на протяжении многих десятков лет. Предположения обсуждаются самые разные. Так, некоторые ученые полагают, что залив Св. Лаврентия в Канаде - часть гигантского ударного кратера диаметром около 290 км и глубиной порядка 6 км. Высказываются и просто фантастические предположения. Скажем, существует идея, что Бермудская впадина, диаметр которой порядка 1250 км, является гигантским кратером астероидного столкновения, с чем и связаны аномальные эффекты Бермудского треугольника.

Молнии бьют в Землю 8,6 млн раз в день, то есть примерно 100 раз в секунду.

Метеоритные кратеры подразделяются на два типа.

Первый тип - ударные кратеры диаметром не более 100 м. Они образуются при частичном дроблении и выбрасывании горных пород и возникли вследствие падения относительно небольших метеоритов, летевших со скоростью не более 2,5 км/с.

Второй тип - взрывные кратеры, возникающие при взрыве метеорита в момент его столкновения с земной поверхностью. Крупный метеорит, подлетающий к Земле со скоростью 3-20 км/с, взрывается в результате торможения о горные породы. Вещество его полностью или почти полностью испаряется. Взрывные кратеры бывают заполнены раздробленной породой, которая нередко оплавлена. В некоторых наиболее крупных кратерах обнаружены своеобразные породы, получившие название импакитов. Они почти целиком состоят из переплавленных пород, застывших в виде стекла.

Горные породы, подвергшиеся метеоритному взрыву, разбиваются коническими трещинами. Вершины трещин конусов разрушения указывают направление, откуда пришла ударная волна. Именно импакиты и конусы разрушения являются доказательством метеоритного происхождения древнего кратера.

Что же происходит, когда метеорит сталкивается с Землей? В процессе можно выделить несколько основных стадий. Вот они:

а - столкновение метеорита с поверхностью Земли и торможение;

б - испарение метеорита и плавление окружающих пород;

в - разогрев газов, выброс раздробленных и частично расплавленных пород;

г - падение материалов выброса в кратер и за его пределы;

д - подъем основания кратера и выдавливание части расплава к поверхности.

А теперь несколько самых мощных взрывных столкновений. Наиболее крупный из достоверных метеоритных кратеров - Попигайская котловина. Она расположена на севере Сибирской платформы, в бассейне реки Хатанги. Один из притоков Хатанги носит название Попигай. В бассейне этой реки был обнаружен гигантский метеоритный кратер около 100–130 км в поперечнике, возраст которого, по мнению специалистов, составляет 35 млн лет. Предположительно Попигайский астероид достигал 8-10 км в диаметре и летел со скоростью около 30 км/с. Он пробил атмосферу насквозь, пробил толщу осадочных пород на глубину порядка 1200 м и затормозил в породах фундамента Сибирской платформы. По оценкам, энергия взрыва достигала 1023 Дж, то есть была в 1000 раз больше, чем при самом сильном вулканическом взрыве: моментально расплавилось около 1750 км горных пород, перемешав воедино базальты, граниты и осадочные отложения. В результате образовалась лава с высоким содержанием кремнезема (65 %), резко отличающаяся от глубинных базальтовых излияний Сибирской платформы.

Об условиях, существовавших в эпицентре в момент взрыва, можно судить по тому, что в кратере найдены возникшие при катастрофе минералы. Подобные удалось получить искусственным путем при ударных давлениях в 1 Мбар и температуре около 1000 °C. Выброшенные во время взрыва крупные глыбы кристаллических пород фундамента платформы разлетелись на расстояние до 40 км от края кратера. В радиусе нескольких тысяч километров все сгорело дотла, испарились воды озер и рек.

В 1920 году известный финский ученый-геолог Пентти Эскола обследовал северную часть Ладожского озера. Он обратил внимание на необычную лаву около озера Янисъярви, которая по составу очень напоминала импакиты взрывных кратеров. Озеро Янисъярви, расположенное в 95 км от города Сортавалы, имеет размер 14 × 26 км и, вероятно, является древним метеоритным кратером. В пользу этого свидетельствуют также два скалистых лавовых островка в центре озера.

В Украине, в Кировоградской области, в бассейне реки Тясмин - правого притока Днепра - обнаружен Болтышский кратер (диаметром около 25 км), возникший в результате падения метеорита 88 млн лет назад. Если бы столкновение случилось сегодня, от Украины осталось бы просто… нет, даже мокрого места не осталось бы! Получилась бы очень сухая, горячая, расплавленная яма.

В Винницкой области тоже есть астроблемы, только меньшего размера, диаметром 3–5 км. Они расположены к востоку от Винницы и к юго-востоку от Гдова.

Хорошо исследован крупный метеоритный кратер Рис, внутри которого расположен город Нордлинген (Германия). На протяжении веков считалось, что огромное углубление, в котором расположен город, является вулканическим кратером. Но в 1960 году американский ученый Евгений Шумейкер во время посещения старинной городской церкви, построенной из местного материала, с удивлением заметил, что камни, из которых сложены стены, являются кварцевыми. А кварц образуется при ударных давлениях, обычно вызываемых падением метеорита. Последующие исследования странных скальных образований в округе окончательно утвердили специалистов во мнении, что громадный кратер, где еще в средние века вырос город, появился вследствие удара и взрыва гигантского метеорита около 15 млн лет назад. Котловина достигает в поперечнике 25 км. Сейсморазведочные работы показали, что под 35-метровым слоем озерных осадков скрыт внутренний подземный кратер диаметром около 10 км и глубиной не менее 700 м, заполненный раздробленной, спекшейся и частично расплавленной породой. Разрыхленная порода обусловливает некоторое понижение поля силы тяжести по сравнению с окружающей местностью. Такое уменьшение соответствует дефициту массы в кратере 30–60 млрд т. Следовательно, в момент взрыва было выброшено до 20 км породы.

Во Франции метеоритный кратер Рошешуар диаметром около 15 км образовался, как полагают, 150–170 млн лет назад.

К "молодым" кратерам - возрастом до 15 млн лет - относятся Босумтви в западноафриканской Гане, в котором расположено озеро (диаметр 9,8 км, глубина 350 м), и Чабб на полуострове Унгава в Канаде (диаметр 3,4 км, глубина 390 м). Метеоритный кратер Ротер Камм, обнаруженный в 1965 году в юго-западной Африке, в 95 км от устья реки Оранжевой, достигает 30 м. Дно кратера засыпано, следовательно, общая глубина его еще больше. Поперечные размеры кольцевого вала, сложенного обломками гнейсов, около 2,4 км, высота над окружающей местностью 90 м. Кратер Локар в Индии имеет поперечник 1,8 км, а глубину 120 метров.

В конце прошлого столетия в США были начаты исследования кратера диаметром 1,2 км и глубиной около 170 м. Вал, окаймляющий его, возвышается на 40–50 м. Это так называемый Каньон-Дьябло в штате Аризона. Согласно легенде местных индейцев, он образовался в месте, куда в далеком прошлом с неба спустился на огненной колеснице бог. В радиусе около 10 км были обнаружены многочисленные обломки железного метеорита весом около 20 т, но они, очевидно, представляют собой лишь ничтожную часть упавшего гиганта. Попытки найти внутри кратера основную массу метеорита успехами не увенчались, но ученые пришли к выводу, что он весил примерно 5 млн т. Воронка возникла от обломка весом 63 тыс. т и диаметром 30 м; энергия, освободившаяся при его падении, сопоставима с энергией взрыва 3,5 млн т тротила.

Удивительное кольцо Вредефорт найдено на юге Африки - в 2005 году оно было даже зачислено в перечень объектов Всемирного наследия ЮНЕСКО. Размер астероида оценивается примерно в 10 км, а получившийся в результате удара кратер имеет диаметр около 250–300 км, и это самое большое образование на Земле, вызванное контактом планеты с иными космическими телами. Возраст кратера оценивается в более чем 2 млрд лет. Это второй из древнейших известных кратеров на Земле: Вредефорт нe менее чем на триста миллионов лет моложе кратера Суавъярви, расположенного в России.

В Австралии также найдена своя "национальная" астроблема - Госсес Блафф. Она представляет собой небольшой холм, окруженный кольцом раздробленных пород, диаметром около 14 км. Возраст его - 130 млн лет. В районе Госсес Блафф для исследования строения земной коры проводилась сейсмическая разведка и бурение скважин, было произведено несколько взрывов. Это позволило установить подземный рельеф кратера. На глубине расположена полусферическая чаша радиусом 2,3 км, окруженная более мелкой блюдцеобразной депрессией радиусом около 11 км. Найдены конусы сотрясения, импакиты; энергия ударного процесса составила 1020 Дж.

В Южном Техасе (США), в бассейне Сиерра-Мадре в горных породах, образовавшихся из древних морских отложений, известен кольцевой вал диаметром около 10 км. В котловине внутри вала слои горных пород залегают почти горизонтально и лишь в центре их прорывает купол, сложенный известняками и возвышающийся на 450 м. Пласты здесь сильно разрушены, а в известняке обнаружены конические системы трещин, вызванные мощной ударной волной. Эта астроблема, как считают ученые, образовалась в результате падения кометы в древний океан, имевший здесь глубину 2–3 км. Ядро кометы с космической скоростью ударило в кору, и произошел гигантский взрыв. Ударная волна, пройдя через воду, ослабла и смогла вызвать катастрофические разрушения дна лишь в эпицентре. Одновременно в океане образовалась огромная водяная воронка. Вода увлекла за собой донные осадки, разложив их в виде кольцевого вала. Освобожденное от гидростатического давления морское дно вспучилось в эпицентре и поднялось. При оседании водяной воронки вода принесла назад взмученный материал, который образовал слои новых осадков, сгладившие рельеф подводного кратера. Через много десятков миллионов лет кратер поднялся на поверхность, где затем разрушился.

Ряд крупных кратеров метеоритного происхождения найден в последнее время в Канаде. К ним относятся, в частности, кратеры двойного озера Клируотер. Здесь мы имеем, так сказать, две астроблемы по цене одной. Озера, по-видимому, образовались от ударов двух метеоритов. Диаметр Восточного Клируотера - около 28 км, Западного - около 32 км. Самой крупной кольцевой структурой предположительно метеоритного происхождения является здесь кольцо Маникуаган-Мушалаган, имеющее диаметр около 65 километров.

С падением метеорита связывают крупнейшее месторождение никеля Садбери, расположенное в Канаде. Рудный бассейн Садбери имеет овальную форму размером 60 × 27 км. Он располагается на поверхности Канадского кристаллического щита, сложенного гранитами и кварцитами. Не так давно была выдвинута гипотеза о том, что бассейн Садбери появился в результате падения гигантского метеорита 1,85 млрд лет назад. Возраст определен методами абсолютной геохронологии. В составе пород Садбери есть особая составляющая - брекчия. Это раздробленная и вновь сцементированная порода, складывающаяся из коренных гранитов, а также стекла - расплавленных и быстро остывших, не успевших раскристаллизоваться минералов. Это очень напоминает материал из известных метеоритных кратеров. Сходство это недавно было подтверждено находкой в Садбери кристаллов кварца, обладающих трещинами своеобразной ориентировки: такие возникают в кварце только под воздействием ударных волн, создающих чрезвычайно высокие давления, при ядерных взрывах или при падении гигантских метеоритов. Очевидно, удар гигантского метеорита вызвал активную вулканическую деятельность, и в результате поднялись глубинные расплавленные массы, содержавшие большое количество металлов.

А вот кратер, являющийся кандидатом в рекордсмены, пока надежно спрятан природой от человеческого любопытства.

В 1958–1960 годах во время работ французской и американской экспедиций в Антарктиде, на Земле Уилкса, под ледяным щитом были обнаружены некоторые аномалии силы тяжести. При сопоставлении данных обеих экспедиций выявили, что район отрицательной аномалии имеет форму круга диаметром почти 500 км и что она похожа на те, которые наблюдаются вблизи больших метеоритных кратеров. Однако доказательств ударного происхождения кратера не было. Только в 2006–2009 годах благодаря данным гравитационного поля Земли, полученными с помощью спутников, удалось установить, что аномалия частично вызвана существованием впадины внутри кратера, а частично - разрыхленными породами. Очень похоже на астроблему!

Но поскольку вся структура находится под Антарктическим ледяным щитом, дальнейшие исследования пока невозможны, так что ее метеоритное происхождение пока окончательно не доказано - вообще-то могут существовать и другие объяснения такой аномалии. Но если кратер Земли Уилкса действительно является ударным, то он сразу выходит на первое место - становится крупнейшим метеоритным кратером на Земле! А небесное тело, которое могло вызвать взрыв такой силы, по расчетам, должно было быть примерно в 6 раз больше того, которое образовало кратер Чиксулуб в Центральной Америке, как предполагается, ставший причиной вымирания динозавров. Возникла даже гипотеза, что падение этого метеорита на землю Антарктиды могло вызвать на нашей планете пермско-триасовое вымирание около 250 млн лет назад.

Подтверждение метеоритного происхождения этого колоссального кратера имеет большое значение для гипотезы об образовании тектитов - загадочных обломков темно-зеленых стекловатых камней. Одни исследователи считают их особым классом метеоритов, другие - продуктом вулканических извержений на Луне. Есть мнение, что тектиты возникают из горных пород, расплавленных при ударе крупных метеоритов и с чудовищной силой выплеснутых из кратера. Слабым местом этой гипотезы было отсутствие молодых метеоритных кратеров в Австралии и Тасмании, где тектиты широко распространены. И вот кратер, обнаруженный в Антарктиде, оказывается как раз в центре Австрало-Тасманийской дуги, изобилующей тектитами. Тем самым данная гипотеза получает новое подтверждение.

Лед неодинаково холоден. Температура льда антарктических ледников достигает –60 °C. Намного теплее лед гренландских ледников - в среднем –28 °C. И совсем "теплые" льды - с температурой около 0 °C - лежат на вершинах Альп.

Назад Дальше