Внеземной разум. Мифы и реальность - Олег Фейгин 11 стр.


Так возникла новая гипотеза возникновения жизни на Земле, утверждавшая, что появлению мира первых живых клеток с их ДНК, РНК и белками предшествовал намного более примитивный мир, в котором существовали только молекулы первичной РНК. Эти зародыши жизни работали поначалу сразу "в трех лицах", неся первичную биологическую информацию, передавая ее потомкам и катализируя биохимические реакции. В ходе дальнейших исследований было накоплено множество любопытных результатов. Но совершенно неожиданно у мира РНК возникла новая проблема – проблема времени.

Раньше считалось, что первые "живые молекулы" появились спустя примерно миллиард лет после окончания интенсивной бомбардировки Земли метеоритами и кометами. Эти небесные осколки образовались из того же первичного газового сгустка, что Земля и другие планеты, в том же месте в огромном количестве, поэтому первые несколько сотен миллионов лет столкновения с ними были чрезвычайно частыми. Жизнь в таких условиях просто не могла возникнуть: Земля то и дело плавилась и кипела. А ведь для случайной сборки многих атомов в молекулу нужной структуры РНК требуется долгий период стабильных, неизменных условий.

Миллиарда лет, по оценкам специалистов, было бы достаточно. Но в последние годы стали множиться данные, говорящие о том, что, похоже, этого миллиарда у жизни в запасе просто не было: самые древние окаменелые структуры, подобные современным бактериям, имеют возраст 3,8 миллиарда лет, то есть они возникли всего через двести миллионов лет после окончания периода интенсивного падения метеоритов. А недавние исследования показали, что последние по времени массовые падения метеоритов произошли всего 3,8 миллиарда лет назад, то есть для появления жизни путем случайных переборов биохимических вариантов времени не осталось вообще!

Все эти трудности, вместе взятые, придают высказываниям биологов определенный пессимистический настрой. Ведущие ученые, эволюционисты и генетики, ныне выдвигают новую гипотезу – гипотезу о мире, предшествовавшем появлению первых РНК. Теперь речь уже идет о каких-то "квазиживых" молекулах, которые сделали возможным быстрое появление архаичных РНК. Некоторые исследователи ищут даже такие молекулы, которые состояли бы только из аминокислот, легко образующихся в "первичном бульоне".

Выдвигаются и более смелые идеи – о том, что жизнь вообще начиналась без всяких "молекул жизни", просто на основе тех циклов биохимических реакций, которые самопроизвольно возникают вблизи мест выхода горячей лавы на океанском дне. Среди группы биохимиков популярна "глиняная" гипотеза, согласно которой первые самовоспроизводящиеся системы вообще были неорганическими, например система ионов в слое глины, направляющая аналогичный способ укладки следующего слоя, и т. д. Уже показано, что добавка глины, содержащей положительные ионы, к смеси отрицательно заряженных нуклеотидов приводит к самопроизвольному образованию цепочек РНК длиной в десятки нуклеотидных звеньев.

У теории РНК-мира уже солидный экспериментальный "багаж". Химики научились синтезировать огромное количество разных РНК со случайной последовательностью нуклеотидов, а затем отбирать из них молекулы с нужными свойствами. Получены рибозимы, катализирующие синтез нуклеотидов, присоединение аминокислот к РНК и другие биохимические процессы. Стирая грань между живым и неживым, уже растут на искусственных средах в лабораториях удивительные колонии размножающихся молекул РНК, способные синтезировать белки.

Еще дальше пошли физикохимики, которые утверждают, что возникновение жизни вообще не требует появления каких-то сложных "носителей самовоспроизведения". Исходя из теории сложных систем, они приходят к выводу, что любая такая система, будь она сложена из камней, звезд или молекул, достигнув некоторого уровня сложности, неизбежно порождает определенную упорядоченность.

Пока нам известен только один вид земной белковой жизни, и мы не знаем, какие из ее свойств являются обязательными для любой жизни во Вселенной. Биологи обычно упоминают такие обязательные свойства, как наличие наследственной информации, рост и размножение, а также извлечение энергии из среды обитания. Первичная смесь нуклеотидов, жиров и аминокислот неизбежно должна была в какой-то определенный момент перейти из хаотического состояния в упорядоченное. Вот здесь и могла бы проявиться способность к самовоспроизведению, то есть возник бы своего рода молекулярный завод, воспроизводящий себя как целое и создающий внутри себя все более сложные молекулы. Воздействие внешней среды уже на первых стадиях существования такого древнейшего самовоспроизводящегося организма должно было вести к его совершенствованию, и именно на этом пути в нем возникли молекулы РНК, ДНК и белков.

Отсюда, в частности, следует вывод, что Вселенная должна буквально кишеть очагами случайно возникшей жизни, подобной земной. К сожалению, пока эти очаги живого в Метагалактике можно увидеть только на полотнах художников-фантастов.

Глава 2 Живое из неживого

При всем разнообразии ныне существующих на Земле форм жизни у них есть общее: главные молекулярные механизмы у современных организмов, как было неоднократно показано, одни и те же. Установление этой общности биохимической организации – одно из крупнейших открытий за последние сто лет. Нет никакого сомнения, что оно проливает свет и на историю эволюции. Но, как мне кажется, при рассмотрении самых первых этапов эволюции концепция единства биохимической организации не приносит большой пользы.

А. Дж. Кернс-Смит. Первые организмы

Удивительно, но среди биологов, биофизиков и биохимиков, не говоря уже об экологах и уфологах, до сих пор не существует общепринятого определения жизни! Одни ученые полагают, что жизнь – это особый химический процесс, связанный с извлечением энергии из окружающей среды. Другие настойчиво подчеркивают обязательную индивидуальность живых объектов и считают, что понятие "жизнь" неотделимо от понятия "организм", третьи, как правило непрофессиональные энтузиасты, наделяют живую материю всяческими мистическими свойствами, наподобие фантастического биополя. Эта странная субстанция, по словам уфологов-экстрасенсов, окружает все организмы, проявляясь как некая аура, хотя конечно же она не имеет ничего общего с физической реальностью.

Первым ученым, заявившим о происхождении живого исключительно из живого, был итальянский естествоиспытатель Франческо Реди, живший в эпоху Возрождения. Позже принцип Реди доказал великий физиолог Луи Пастер. В серии изящных опытов с хитро изогнутыми колбами он показал, что "зарождение" микроорганизмов в стерильном бульоне происходит только в том случае, если их зародыши могут попасть в бульон из воздуха или иным путем. Если преградить путь "семенам жизни", даже оставив доступ воздуху, никакого самозарождения не произойдет. Так попутно был открыт метод пастеризации жидкостей и продуктов – нагрев до определенной температуры, убивающей микробы и бактерии.

И хотя с вульгарным витализмом было покончено, наука XIX века рассматривала только два варианта: либо жизнь существовала изначально, либо она сотворена высшим разумом. Первой точки зрения придерживался видный геохимик В. И. Вернадский. Его последователи вместе с водой выплеснули ребенка, посчитав, что все известные эксперименты полностью отрицают переход неорганического вещества в органику.

Доказав невозможность самозарождения, ученые должны были теперь долго и мучительно доказывать его возможность. Поначалу дело казалось безнадежным, и грань между живой и неживой материей – непреодолимой. Однако прошли десятилетия, и биохимики научились получать многие органические вещества из неорганических. Стало ясно, что между живой и неживой материей на химическом уровне граница довольно размыта. Следовательно, хотя прямое самозарождение живых существ невозможно, жизнь могла появиться постепенно, в результате очень долгой "молекулярной эволюции". С тех пор и до сегодняшних дней усилия ученых направлены на поиски доказательств и развитие этой гипотезы. Что же касается идеи Вернадского об изначальности жизни, то она сейчас практически не имеет сторонников, поскольку на первых этапах развития Вселенной синтез даже самых простых органических соединений был невозможен.

Дилетанты любят рассуждать о развитии Вселенной как о едином направленном процессе, в ходе которого самопроизвольно и неизбежно возникают все более сложные структуры. Возникло даже особое околонаучное направление – универсальная история. При таких взглядах на историю мироздания у неспециалистов часто возникает впечатление, что каждый новый шаг в эволюции Вселенной логически вытекает из предыдущего и, в свою очередь, предопределяет следующий. Возникновение жизни предстает уже не случайностью, а закономерным итогом развития. Вселенная словно была изначально спроектирована так, чтобы в ней появилась жизнь, и проект был чрезвычайно точен: малейшее изменение базовых физических констант сделало бы жизнь невозможной. Здесь мы опять сталкиваемся с идеалистическим "антропным принципом". Напомним, что его суть в том, что физические законы нашего мира специально так "сконструированы", чтобы было кому рассуждать о мудрости его устройства.

Когда-то наша Вселенная возникла в чудовищном катаклизме Большого взрыва из загадочного состояния бесконечно малой сингулярности. В первые мгновения в кипящем вареве полей и сил не было даже атомов и молекул. Позже появились элементарные частицы, из них образовались атомы водорода; скопления атомов превратились в звезды первого поколения. Так мрак "темных веков", как их называют астрономы, озарился вспышками первых звезд, в которых зажглись "искры" реакций ядерного синтеза, превращающего самое распространенное космическое топливо, водород, в гелий. Прошло еще несколько сотен миллионов лет, и самые крупные звезды после истощения запасов водорода взрывались. При этом давление и температура в недрах звезды достигали колоссальных величин. Это создавало необходимые условия для синтеза тяжелых элементов. Все элементы тяжелее гелия, в том числе необходимые для жизни углерод, кислород, азот, фосфор, сера и другие, могли образоваться только во время таких взрывов. Звезды первого поколения стали фабрикой по производству атомов, необходимых для будущей жизни.

В своей книге "Возникновение жизни" Дж. Б. С. Холдейн так описывает эти процессы:

Спустя несколько тысяч лет после своего образования Земля, вероятно, достаточно остыла, так что на ней образовалась довольно постоянная твердая кора. Однако в течение очень долгого времени температура этой коры была выше температуры кипения воды, и конденсация воды происходила весьма медленно. Примитивная атмосфера содержала, возможно, очень мало кислорода или не содержала его вовсе… Почти весь углерод органических веществ и большая часть углерода, содержащегося сейчас в меле, доломитах и известняках, присутствовала в примитивной атмосфере в виде двуокиси углерода. Вероятно, значительная часть того азота, который сейчас находится в воздухе, была связана с металлами, образуя нитриды земной коры, так что под действием воды происходило непрерывное образование аммиака. Солнце светило, может быть, несколько ярче, чем сейчас, и, поскольку атмосфера не содержала кислорода, ультрафиолетовые лучи не задерживались почти целиком слоем озона (аллотропная форма кислорода) в верхних слоях атмосферы и самим кислородом в более нижних ее слоях, как это происходит теперь. Они достигали поверхности суши и моря или, по крайней мере, облаков. <…> Известно, что при действии ультрафиолетовых лучей на смесь воды, двуокиси углерода и аммиака возникает множество различных органических соединений, в том числе сахара, а также, по-видимому, некоторых соединений, из которых образуются белки… Однако до того, как появилась жизнь, они, вероятно, накапливались, так что первичный океан достиг постепенно консистенции горячего жидкого бульона…

Взрывы первых звезд создали тяжелые элементы и рассеяли их в космосе. Из новых скоплений атомов образовались звезды второго поколения, в том числе и наше Солнце. Облака рассеянных частиц, не вошедших в состав центральной звезды, вращались вокруг нее и постепенно разделялись на отдельные сгустки – будущие планеты. Именно на этом этапе и мог начаться синтез первых органических молекул. Таким образом, молодая Земля могла иметь в своем составе большое количество органики уже с самого начала своего существования.

Возможность органического синтеза в протопланетном облаке предполагалась давно, но подтверждена была лишь недавно. С помощью сложных расчетов и компьютерного моделирования ученые показали, что в газово-пылевых протопланетных облаках имеются необходимые условия для синтеза разнообразной органики из водорода, азота, угарного газа, цианистого водорода и других простых молекул, обычных в космосе. Непременным условием является присутствие твердых частиц-катализаторов, содержащих железо, никель и кремний.

Вместе с Землей возник и круговорот химических веществ в природе. Одни элементы поступали из сдавленных, разогревшихся недр Земли, формируя первичную атмосферу и океаны. Другие приходили из космоса в виде валящихся с неба остатков протопланетного облака, метеоритов и комет. В атмосфере, на поверхности суши и в водоемах все эти вещества смешивались, вступая друг с другом в химические реакции, и превращались в новые соединения, которые, в свою очередь, тоже вступали в реакции друг с другом.

Между химическими реакциями возникала своеобразная конкуренция – борьба за одни и те же вещества, "пищу" для дальнейшего развития. В такой борьбе всегда побеждает та реакция, которая идет быстрее. Начинается удивительный "естественный отбор" среди химических процессов – медленные реакции постепенно затухают и прекращаются, вытесняемые более быстрыми.

Важнейшую роль в этом соревновании играли катализаторы – вещества, ускоряющие те или иные химические превращения. Огромное преимущество должны были получать реакции, катализируемые своими собственными продуктами. Следующий этап на долгой дороге от неживого к живому – это формирование самостоятельно обеспечивающихся химических циклов. В их развитии происходит не только синтез катализаторов, но и частичное возобновление расходуемых веществ. Отсюда уже недалеко и до настоящей жизни, ведь жизнь в основе своей – это самоподдерживающийся процесс.

Известно, что небесные тела могут обмениваться веществом: при столкновении планеты с крупным астероидом из ее поверхности выбиваются фрагменты породы, которые могут улететь в космос и попасть на другие планеты. К примеру, на поверхность Земли часто долетают метеориты с Марса. Благодаря такому "обмену" метеоритами возникшие в ходе химической эволюции на одной из планет вещества и катализаторы могут попасть на соседние тела и даже в другие звездные системы. Так за несколько сотен миллионов лет распространение кирпичиков жизни способно охватить всю нашу Галактику. Подобным образом масштаб химической "кухни", готовящей молекулярные блюда для будущей жизни, может расшириться от планетарного до галактического.

Мы уже знаем, что возникновение жизни чаще всего связывают с молекулами РНК, служащими посредниками между ДНК и белками при считывании наследственной информации. При помощи РНК осуществляется синтез белков в соответствии с записанными в молекуле ДНК "инструкциями". Некоторые из "работ", выполняемых РНК, очень похожи на функции белков, другие напоминают свойства ДНК. И все это РНК делает не в одиночку, а при активном содействии со стороны белков. На первый взгляд РНК кажется "третьей лишней". Нетрудно представить себе организм, в котором РНК вовсе нет, а все ее функции поделили между собой ДНК и белки. Правда, таких организмов в природе не существует.

Согласно теории первичного РНК-мира первые живые организмы были РНК-молекулами без белков и ДНК. Прообразом РНК-организма могли стать самовоспроизводящиеся молекулы, синтезирующие собственные копии. В итоге РНК может выполнять сразу две главные жизненные задачи – хранение информации и активную работу. Конечно, ДНК лучше справляется с задачей хранения информации, а белки – с "работой", но изначальные РНК-организмы могли вполне обходиться и без них.

Все живые организмы дискретны в пространстве и имеют наружную оболочку. Трудно представить себе живое существо в виде туманного облачка или раствора. Однако поначалу жизнь существовала именно в виде растворов. Чтобы не раствориться в водах первичного океана, подобные "жидкие сущности" должны были оккупировать микроскопические щели и выемки в горных породах. К тому же некоторые минералы являются катализаторами для многих биохимических реакций. Кроме того, поверхность минералов могла служить своеобразной основой, к которой прикреплялись молекулы РНК. Упорядоченная структура кристаллов помогала упорядочить и структуру этих молекул, придать им нужную пространственную конфигурацию.

Но рано или поздно первичная жизнь должна была обзавестись собственными оболочками – перейти от "жидкого" состояния к организменному. Идеальным материалом для таких оболочек являются особые молекулы, способные образовывать на поверхности воды тончайшие пленки. Если взболтать такую воду, в ее толще возникнет множество мелких пузырьков – водяных капелек, покрытых оболочкой. Эти капельки проявляют интересные свойства, которые делают их похожими на живые клетки. Например, они способны осуществлять обмен веществ путем избирательной проницаемости: одни молекулы сквозь них проходят, другие нет. Благодаря этому одни вещества втягиваются в каплю, другие выводятся, третьи – накапливаются внутри. Правда, для того чтобы это происходило постоянно, мембран недостаточно. Нужно еще, чтобы внутри капли шли химические реакции, а для этого там должны находиться катализаторы – белки или РНК.

Первые "капельки жизни" – коацерваты – могли образоваться самопроизвольно из молекул липидов, возникших неорганическим путем. Впоследствии они могли вступить в симбиоз с "живыми растворами" – колониями самовоспроизводящихся молекул РНК. Подобное сообщество уже можно назвать организмом.

На начальном этапе зарождения жизни участие РНК в синтезе белков было случайным, и последовательности аминокислот из раза в раз воспроизводились не точно, а лишь приблизительно. Поскольку точность резко повышала стабильность такой живой системы, естественный отбор способствовал выработке все более "специализированных" катализаторов. Дело закончилось возникновением универсальной системы специального синтеза любого требуемого белка.

Для синтеза белков все живые организмы по сей день пользуются специальными молекулярными "машинками" – рибосомами, основу которых составляют молекулы РНК. Правда, белки тоже входят в состав рибосом. И белки непростые – маленькие, очень древние, крайне консервативные. Биологам удалось показать, что рибосомные РНК могут синтезировать белок и сами, без помощников – медленно, с трудом, но все-таки могут.

Назад Дальше