Гравитация. От хрустальных сфер до кротовых нор - Александр Петров 26 стр.


Можно сказать, что эффекты ОТО уже используются и в быту: для повышения точности систем навигации и слежения типа GPS. Постоянно на орбитах на высоте 20 000 км находится от 24 до 27 спутников. Для повышения точности используются сигналы от нескольких спутников, обмен сигналами с устройствами на Земле. Для этого необходима строгая синхронизация часов на всех объектах. Оказывается точности атомных часов недостаточно. Необходимо учитывать замедление хода часов, которое происходит, согласно ОТО, в гравитационном поле Земли. Другими словами, одни и те же часы на Земле идут медленнее, чем на орбите. Для высоты 20 000 км эта разница составляет 38 мкс в сутки и приведет к ошибке в определении расстояния до 10 м. Чтобы компенсировать этот эффект, ход часов "по паспорту" на орбите настраивают медленнее. Если их спустить с орбиты и поместить рядом с земными – они будут запаздывать на 38 мкс в сутки.

До сих пор наше изложение фактически демонстрировало успехи ОТО, и может показаться, что в силу этой радужной картины, кроме ОТО никакие другие теории не рассматривались, ничего другого не предлагалось, или вовсе все "неэйнштейновское" наотмашь отметалось. Вовсе нет. Деятельность по созданию теорий гравитации была и остается очень бурной. Развитие теорий и их активная и всесторонняя проверка продвигались рука об руку весь XX век и далее.

Большинство проверок могут быть отнесены к специальным классам, предложенным американским релятивистом Клиффордом Уиллом в 2001 году:

• Простейшие основания.

• Эйнштейновский принцип эквивалентности.

• Параметризованный пост-ньютоновский формализм. О соответствии двум последним классам поговорим ниже, а сейчас обсудим, что же такое "простейшие основания"?

В начале 1970-х годов группа ученых из Калифорнийского технологического института под руководством идеолога проекта LIGO профессора Кипа Торна, а также Клиффорда Уилла и тайваньского физика Вей-Тоу Ни составила список теорий гравитации XX века. По каждой теории они задались следующими вопросами по проблеме простейших оснований:

• является ли теория самосогласованной?

• является ли она полной?

• согласуется ли она, в пределах нескольких стандартных отклонений, со всеми проведенными к настоящему времени экспериментами?

Критерий "согласование со всеми экспериментами, проведенными к настоящему времени", часто заменялся критерием "согласования с большинством следствий механики Ньютона и специальной теории относительности".

Самосогласованность неметрических теорий включает требования, например, отсутствия в ее решениях тахионов, гипотетических частиц, движущихся со скоростями больше световой; отсутствия проблем в поведении полей на бесконечности и т. п.

Для того чтобы теория гравитации была полной, она должна быть способна описать результаты любого мыслимого эксперимента, она должна быть совместной с другими физическими теориями, подтвержденными экспериментом. Например, любая теория, которая не может из первых принципов предсказать движение планет или поведение атомных часов, является неполной.

Примером неполной и несамосогласованной теории может служить теория тяготения Ньютона в сочетании с уравнениями Максвелла. В такой теории свет (как фотоны) отклоняется гравитационным полем (хотя и вдвое слабее, чем в ОТО), а свет (как электромагнитные волны) – нет.

Если теория не проходила по этим критериям, то ее, тем не менее, не спешили отбрасывать. Если теория была неполна в своих основах, группа пыталась дополнить ее с помощью малых изменений, обычно сводя теорию в отсутствие гравитации к специальной теории относительности. Только после этого делался вывод, достойна ли она дальнейшего рассмотрения. Теорий, которые заслуживают внимания, в 70-х годах насчитывалось несколько десятков. Трудно сказать, но за последние два-три десятилетия их число, возможно, достигло сотни и более. Все зависит от ответа на вопрос, что считать одной теорией, а что классом теорий. Поэтому отбор по различным критериям проводится и сейчас, и с еще большим пристрастием. Это крайне важно, поскольку есть предпосылки, что в ближайшие десятилетия или на малых масштабах, или на больших, или одновременно ОТО будет изменена.

Проверка ОТО на масштабах планетных систем

Теперь вспомним, что основой ОТО как метрической теории является принцип эквивалентности и постулат движения по геодезическим. Известно, что этим основам, если они установлены с абсолютной точностью, удовлетворяют лишь "чисто" метрические теории (с небольшими оговорками), т. е. теории, где гравитационное поле представлено только метрическим тензором. Оказывается, что ОТО это лишь простейший вариант метрической теории. Нисколько не нарушая этих основ, можно представить бесчисленное (без преувеличения) множество метрических теорий. Как тогда можно изменить теорию? За что же зацепиться в этом случае? Конечно, лишь эксперимент и наблюдения могут поставить все на место. Но для классификации альтернативных предложений нужна своя стратегия.

Работу над стандартным формализмом для проверки альтернативных моделей гравитации начал еще в 1922 году Артур Эддингтон (1882–1944). Усовершенствование этого формализма, так или иначе, продолжалось на протяжении десятилетий, а закончили дело американские физики Клиффорд Уилл и Кеннет Нордведт в 1972 году. Ими предложен так называемый параметризованный пост-ньютоновский (PPN) формализм. Он создан для теорий либо чисто метрических, либо с эффективной метрикой, представляющей искривленное пространство-время, где происходят физические взаимодействия. Рассматриваются лишь отклонения от механики Ньютона, поэтому формализм применим только в слабых полях. В общем случае существует 10 PPN-параметров. В случае ОТО 2 из них равны единице, а остальные 8 – нулю.

Чем полезен PPN-формализм в проверке ОТО? Новые технологии позволяют достаточно точно отслеживать движения небесных тел, и современная стандартная проверка происходит следующим образом. С помощью уравнений ОТО именно в PPN виде рассчитываются траектории тел в Солнечной системе. Этот вид оказывается наиболее конструктивным. Затем их сравнивают с данными наблюдений. Современный результат таков, что соответствие теоретических PPN параметров ОТО наблюдаемым подтверждается с точностью от десятых до сотых долей процента – это очень высокая точность.

Другие точные тесты – это наблюдения двойных пульсаров: систем, состоящих из двух нейтронных звезд, их известно сейчас около десятка. Кроме этого, есть системы, состоящие из радиопульсара и белого карлика, они тоже подходят для тестов. На основании этих наблюдений вычисляются параметры орбит. Оказывается, что отклонения от кеплеровских значений совпадают с отклонениями, предсказанными ОТО, также с точностью до десятых и сотых долей процента. Специалисты испытывают большой оптимизм в перспективах повышения точности при изучении именно двойных пульсаров. Он основан на том, что нейтронные звезды имеют размеры в десятки километров в системах с размерами орбит в миллионы километров. В таких системах звезды фактически являются точечными объектами. Их внутреннее строение, внутренние движения, а также деформации практически не влияют на траектории. В отличие от этого, в Солнечной системе все эти факторы, а также влияние многочисленных "соседей" существенно ограничивают повышение точности. Резюмируя, можно сказать, что на масштабах планетных систем ОТО подтверждена с высокой точностью и точность измерений будет повышаться.

Необходимость модификации ОТО

Надо жизнь сначала переделать, переделав – можно воспевать.

Владимир Маяковский

Однако исследования по созданию теорий альтернативных ОТО, в большей части как раз метрических, не прекращаются. Почему? ОТО хорошо подтверждается, как только что было сказано, на масштабах Солнечной системы. Проверить теорию на больших или меньших масштабах существенно сложнее. ОТО, как и любая другая теория, всего лишь модель для описания реальных явлений. Поэтому реальная природа может совпадать с предсказаниями ОТО на масштабах планетных систем, но отличаться на других масштабах.

Вместе с этим, многие современные теоретические и эмпирические данные говорят о том, что так и должно быть, и модификации необходимы. Например, во многих решениях ОТО необходимо рассматривать сильные гравитационные поля, огромные плотности и т. д. А это требует квантования гравитационного поля. Несмотря на значительные усилия, решающего успеха на этом поприще добиться не удалось. Это наводит на мысль, что на малых масштабах, где требуется квантование, гравитационная теория должна быть изменена. С другой стороны, недавнее открытие ускоренного расширения Вселенной многие ведущие специалисты склонны интерпретировать как геометрический эффект, который можно "получить", модифицировав ОТО на космологических масштабах. Независимо от этого, к необходимости изменений ОТО на больших и малых масштабах приводят результаты исследований в физике фундаментальных взаимодействий.

Если говорить о жизнеспособных теориях, то нет установившейся терминологической разницы для альтернативных, модифицированных или новых теорий. Все они, так или иначе, развивают ОТО, поскольку должны работать не хуже на тех масштабах, где она подтверждается. Разрабатывая модификации ОТО или новые теории, авторы сравнивают их с ОТО в соответствующих режимах точно так же, как ОТО сравнивается с гравитацией Ньютона. Если угодно, должен быть удовлетворен все тот же принцип соответствия, но на новом витке познания.

В настоящее время на многих конференциях по теории гравитации обобщенным (или альтернативным) теориям посвящаются целые секции, по этой тематике выходят отдельные сборники, некоторые теории становятся все более и более самостоятельными. Каковы же основные наиболее популярные и перспективные направления в этих разработках?

Во-первых, ОТО является чисто метрической (или чисто тензорной) теорией. Это означает, что геометрия пространства-времени и материя воздействуют друг на друга без посредников. Таких теорий можно построить бесконечно много (о чем мы уже говорили), и они активно разрабатываются. Как правило, уравнения этих теорий отличаются от уравнений ОТО тем, что они дополняются квадратичными и более высокого порядка по кривизне слагаемыми. Дополнительные члены обычно входят с малыми коэффициентами, которые обеспечивают согласие с наблюдениями, скажем, на масштабах планетных систем, но существенно изменяют решения на космологических масштабах.

Другой класс альтернативных теорий характеризуется тем, что воздействие друг на друга геометрии и материи осуществляется через дополнительное поле, чаще всего это скалярное или векторное поле. Однако вклад этих полей не может быть существенным. Отклонение современных альтернативных теорий от ОТО должно выразиться в разнице соответствующих PPN параметров. Чтобы оценить жизнеспособность отличной от ОТО теории (проверить ее) необходимо регистрировать отклонения от значений PPN параметров в ОТО на уровне 10–10. Это означает, что точность измерений, как в Солнечной системе, так и в двойных пульсарах, должна быть улучшена на 1–3 порядка.

Теория гравитации Хоржавы

Эта теория является одним из вариантов векторно-тензорных теорий гравитации и, пожалуй, самая популярная на настоящий момент. Именно поэтому мы рассказываем о ней. Теория была предложена в 2009 году американским теоретиком-"струнником" чешского происхождения Петром Хоржавой. Она несколько отличается от обычных векторно-тензорных теорий, поскольку в ней вместо векторного поля используется градиент скалярного. С одной стороны, сохраняются свойства векторных теорий, с другой – есть специфические собственные полезные свойства.

Еще раз вспомним, что непротиворечивую квантовую теорию гравитации, в которой не было бы расходимостей, на основе ОТО создать не удалось. Поэтому предлагаются различные модификации, которые на квантовых масштабах существенно расходятся с ОТО и становятся "подходящими" для квантования. Для этого при их построении некоторые принципы, лежащие в основе ОТО, изменяются, т. е. оказываются нарушенными. Конечно, это нарушение должно быть настолько незначительным, чтобы не противоречить лабораторным тестам, и чтобы не изменилось действие теории на масштабах планетных систем, где есть хорошее соответствие с наблюдениями. Именно такой является теория Хоржавы. Мы не будем рассказывать насколько она замечательна в смысле квантования, это несколько в стороне от темы книги, зато расскажем о ее свойствах как гравитационной теории – в чем и насколько они отличны от аналогичных свойств ОТО.

Лоренц-инвариантность. Мы уже обсуждали тот факт, что ОТО как бы "выросла" из специальной теории относительности – механики высоких скоростей, сравнимых со скоростью света. Напомним, что в СТО все инерциальные системы отсчета, движущиеся относительно друг друга равномерно и прямолинейно, эквивалентны. Важно вспомнить об измерениях времени в СТО. В каждой инерциальной системе отсчета часы идут в своем собственном темпе, отличном от темпа часов других систем, если их сравнивать. Однако нельзя выбрать ни "лучший", ни "худший" темп, если часы конструктивно идентичны. То есть собственное время каждой инерциальной системы равноправно в отношении других. Это означает, что в СТО нет выделенного течения времени.

Мы также говорили, что на геометрическом языке инвариантность в СТО при переходе от одной инерциальной системы отсчета к другой эквивалентна инвариантности относительно лоренцевых вращений во всем плоском пространстве-времени. В ОТО из-за "включения" гравитации и, соответственно, искривления пространства-времени лоренц-инвариантность во всем пространстве-времени уже невозможна. Тем не менее, ОТО остается лоренц-инвариантной локально, то есть в малой окрестности каждого наблюдателя. Эта инвариантность является одним из принципов, лежащих в основе ОТО, и связана с принципом соответствия ОТО и СТО.

Хронометрическая теория. В ряде модификаций ОТО нарушена как раз локальная лоренц-инвариантность. Среди них и теория Хоржавы. В последнее время особой популярностью пользуется одна из ее реализаций, так называемая "жизнеспособная" ("healthy") непроективная версия, разрабатываемая американскими физиками Диего Бласом и Ориолом Пуйоласом и нашим соотечественником Сергеем Сибиряковым. Эффекты, обсуждаемые ниже, в основном относятся именно к этой модификации ОТО.

Итак, чем же теория Хоржавы отличается от ОТО? В дополнение ко всем обычным полям ОТО добавляют скалярное поле φ, но не обычным образом. Направление его изменения в пространстве-времени определяет специально выделенное направление времени. Именно поэтому скалярное поле называют полем хронона. Тогда поверхности постоянных значений скалярного поля – это поверхности постоянного времени, или "одновременности". В уравнения скалярное поле входит только через производные, поэтому не стоит опасаться бесконечных значений поля хронона. Существенным является только его изменение, а не значения. Поскольку в пространстве-времени есть выделенное направление, то существуют выделенные системы отсчета. Это не свойственно ни СТО, ни ОТО, но свойственно векторно-тензорным теориям. Для наглядности приведем простейший "игрушечный" пример. Одно из решений новой теории – это плоское пространство-время (такое как в СТО) плюс поле хронона, которое оказывается просто временем, φ = t. В СТО мы можем перейти с помощью лоренцевых преобразований из одной координатной системы x, t в другую x′, t′, где время течет по-другому. В новой теории – не можем, поскольку значение скалярного поля при координатных преобразованиях не меняются, а это есть время. Таким образом, здесь, в отличие от СТО, существуют часы, которые отсчитывают выделенное время.

Поскольку в ОТО гравитационным полем является поле метрики пространства-времени, то ясно, почему новую теорию называют хронометрической. Допустимые ограничения на параметры хронометрической теории дают возможность избежать расходимости при квантовании. Еще раз повторим: это и было главной целью ее построения. Но это теоретический успех, а проверить квантовые эффекты такого уровня сейчас вряд ли возможно.

Однако новая теория должна измениться и в классических (не квантовых) проявлениях. А это дает возможность доказать или опровергнуть ее право на существование. Далее мы покажем, в каких классических явлениях и насколько хронометрическая теория отличается от ОТО, можно ли выявить в наблюдениях эффекты новой теории, проиллюстрируем разницу для некоторых теоретических моделей. Для этого обсудим наиболее яркие, на наш взгляд, примеры.

Гравитационно-волновое излучение. Вспомним, что гравитационная волна в ОТО – поперечная, тензорная, имеет две поляризации (см. рис. 10.2) и распространяется со скоростью света. Гравитационные волны в теории Хоржавы также существуют. Однако помимо двух уже упомянутых тензорных поляризаций имеет место скалярная степень свободы. Это означает, что под действием такой волны к движению пробных частиц добавятся продольные (в направлении распространения волны) смещения. Важно то, что тензорная и скалярная составляющие имеют разные скорости распространения. Кроме того, обе скорости, имея зависимость от параметров модели Хоржавы, должны превышать (!) скорость света, хотя и незначительно. Эти отличия от ОТО интересны, но к сожалению пока только теоретически. До сих пор нет хотя бы непосредственного детектирования гравитационных волн, поэтому фиксация отмеченных различий представляется делом отдаленного будущего.

Тем не менее существует косвенное подтверждение существования гравитационного излучения. Это наблюдения за двойными пульсарами, уменьшение размеров орбит которых свидетельствует о потере энергии на гравитационно-волновое излучение. Этот эффект находится в соответствии с ОТО с относительной точностью 10, о чем мы уже говорили. Но предсказания ОТО и теории Хоржавы различны. Поэтому если последняя жизнеспособна, то есть шанс, что уже дальнейшее увеличение точности выявит эти различия и уточнит параметры новой теории.

Взаимодействие частиц. Мгновенное действие. Теперь для хронометрической теории рассмотрим взаимодействие гравитационного поля с веществом. Обсудим только первое (линейное) приближение, которое может быть доступно для наблюдений. В этом порядке эффекты, связанные с нарушением лоренц-инвариантности, подавлены в силу различных причин, но поле хронона присутствует, оно включено лоренц-инвариантным образом в так называемую эффективную метрику. То есть метрика ОТО модифицируется, и материя распространяется не в исходном пространстве-времени, а в некотором эффективном пространстве-времени, причем универсальным образом. Возможно в будущем именно это взаимодействие позволит обнаружить классические явления, представленные хронометрической теорией.

Назад Дальше