2.3. Критерий Поппера, фальсифицируемость
Полезность сомнений в науке можно проиллюстрировать критерием Поппера – фальсифицируемостью теории.
Критерий Поппера был разработан для отличия научной теории от псевдонаучных догадок, даже если те соответствуют опытным данным, а научная теория ещё пока не проверена.
Согласно критерию Поппера, научной является только та теория, которую в принципе можно не только подтвердить, но и опровергнуть опытным путём, даже если такой эксперимент пока трудно поставить. Главное – наличие теоретической возможности опровержения. Поэтому если некое утверждение не удовлетворяет критерию Поппера, то оно заведомо псевдонаучно.
Критерий Поппера – следствие законов математической логики (глава 6.). Даже очень большое число подтверждающих фактов в отношении некоего высказывания, полученного путём индуктивного обобщения, делает его лишь весьма вероятным, но всё-таки не истинным. Однако достаточно одного надёжного опровергающего факта для того, чтобы доказать ложность этого индуктивного обобщения.
Рассмотрим примеры.
Общая теория относительности (ОТО) предсказывает, что свет от одной звезды, проходя мимо другой звезды, должен отклоняться. Если в результате эксперимента окажется, что свет не отклоняется, то это доказало бы ложность ОТО. Таким образом, ещё до проведения такого эксперимента ОТО уже соответствует критерию Поппера о фальсифицируемости и потому имеет право называться научной гипотезой. Первый такой эксперимент был проведён Эддингтоном во время полного солнечного затмения 29 мая 1919 г. Луна закрывала Солнце и позволяла видеть звёзды рядом с Солнцем. Опыт продемонстрировал отклонение луча гравитационным полем Солнца в полном соответствии с ОТО. Что и подтвердило правильность ОТО. Ученые поставили эксперимент на опровеожение теории, но он подтвердил теорию – вот в чем суть. Поэтому теория верна.
Создав периодическую таблицу в 1869 году, Д.И.Менделеев, предсказал существование и подробные свойства химических элементов, которые в то время ещё пока не были открыты. Например, согласно теории Менделеева, должен быть химический элемент с атомным весом около 70 и он должен быть трёхвалетным, т. е. его оксид должен иметь формулу Ga2O3. Такие точные предсказания уже показывали, что периодическая таблица Д.И.Менделеева соответствует критерию Поппера, а потому является научной теорией. Опровергнуть периодическую таблицу Менделеева не составляло труда – достаточно, чтобы найденный элемент с весом 70 имел валентность не Ш, а любую иную – I или II или IV или V или VI или VII. На опыте всё именно так и оказалось, как предсказывал великий Д.И.Менделеев. Найденный элемент получил название галлий.
Теория эволюции Дарвина удовлетворяет критерию Поппера. Достаточно найти в породах докембрия или палеозоя скелет млекопитающего или какой-нибудь искусственный объект, сделанный человеком – хотя бы топор или копьё. Теория эволюции Дарвина предсказывает, что болезнетворные бактерии должны постепенно приспосабливаться к антибиотикам и это наблюдается – именно в результате эволюции и возникли новые виды бактерий, устойчивых к антибиотикам. А ведь прошло всего несколько десятилетий, даже не миллион лет, а уже появился новый вид бактерий.
Астрологические прогнозы часто составляются настолько расплывчато, что их невозможно опровергнуть. Поэтому такие прогнозы, согласно критерию Поппера, не имеют никакой научной ценности. Научную ценность имеет теория, случайное исполнение предсказания которой крайне маловероятно – именно вследствие этого и возникает критерий Поппера. О теории вероятностей и математико-статистической обработке экспериментальных данных мы поговорим в главе 5.
Атеизм, в отличие от религии, удовлетворяет критерию Поппера – ведь достаточно продемонстрировать бога атеистам. Пока никому не удалось это сделать. А поэтому у верующих нет научных оснований для веры в бога.
Однако критерий Поппера – необходимый признак научного знания, но не достаточный. Если некую концепцию можно опровергнуть экспериментально, то она является проверяемой научной гипотезой, но пока еще не истиной. Если в результате проверки теории эксперимент опровергает её, то мы признаём её ложной. Таким образом, эта гипотеза, хоть и оказалась ложной, но она была научно приемлемой гипотезой. Однако, псевдонаука, даже если и соответствует опыту, отличается тем, что принципиально теоретически невозможно поставить эксперимент на её предполагаемое опровержение. Яркий пример – гороскопы.
Критерий Поппера имеет отношение к предсказательной силе научной теории, о которой мы поговорим в главе 7.
2.4. Цензура и запреты на свободу слова в политике антинаучны
Из научной целесообразности свободы слова логически следует необходимость законодательного закрепления свободы слова. Запрет на критику ошибок коммунизма и советской власти погубил СССР. Цензура и запреты на критику – механизм неизбежной гибели страны и любой системы вообще. Ведь если нет конструктивной критики, но невозможно исправить ошибки, улучшить ситуацию и в итоге есть застой и последующая гибель страны.
Научный атеизм исторически в Древней Греции начался со свободомыслия, и в эпоху Просвещения также развивался по причине свободомыслия, а свободомыслие было как раз запрещено в СССР. И вот итог – развал СССР. Значит, если политика игнорирует науку – тем хуже для политики. Если бы в СССР была свобода слова, то он бы видоизменился, но выжил – не было бы демографической катастрофы, развала сельского хозяйства и промышленности, которые длятся уже 22 года.
Статья 19 Всеобщей Декларации прав человека ООН 1948 года [3] гласит:
"Каждый человек имеет право на свободу убеждений и на свободное выражение их; это право включает свободу беспрепятственно придерживаться своих убеждений и свободу искать, получать и распространять информацию и идеи любыми средствами и независимо от государственных границ."
Эта Декларация скрывалась от народа в СССР.
Из хода истории следует, что причиной свободы является истина, просвещение. Для прогресса необходимо больше свободномыслящих людей с аналитическим складом ума, которые умеют думать и анализировать, подвергать сомнению и проверять то, что им говорят, а не верить слепо – ведь для любой лжи сомнение и анализ опасны разоблачением.
Список литературы
[1] А.П.Чехов, письмо от 11 апреля 1889 г. брату Александру, Полн. собр. соч. Т. XIV. Москва, 1949
[2] Всеобщая Декларация прав человека ООН на сайте ООН:
http://www.un.org/ru/documents/decl_conv/declarations/declhr.
shtml
3. Причинно-следственная связь событий материального мира
Все события в мире происходят не сами по себе, а вследствие своих причин. Причина вызывает следствие. Если бросить камень в воду – он потонет. Причиной попадания камня в воду является бросок, а причиной погружения камня на дно – то, что плотность камня выше плотности воды, а также гравитационное взаимодействие. Траэктория падения камня определяется гравитацией, сопротивлением воздуха и воды.
Если кто-либо пытается связать два явления, то необходимо объяснить причинно-следственную связь между этими явлениями. Иначе такой теории – грош цена.
Причинно-следственная связь событий материального мира существует на самом фундаментальном уровне строения материи – среди элементарных частиц, которые взаимодействуют друг с другом посредством физических сил (полей, взаимодействий). В мире есть огромное многообразие сил, которые можно свести всего к 4 фундаментальным силам (взаимодействиям):
• Гравитация . Примеры гравитационного взаимодействия – притяжение предметов к Земле, приливы и отливы – Луна притягивает земную воду, вращение Земли и иных планет вокруг Солнца, вращение галактик. Вестибулярный аппарат – орган, который ощущает вектор силы тяжести, а также инерционные силы при торможении автомобиля, которые эквиваленты тяготению.
• Электромагнетизм . Примеры электромагнитного взаимодействия наиболее широки – все наши органы чувств, за исключением вестибулярного аппарата, вся химия, вся биология, электрические и магнитные явления, свет, радиоволны, звук, любая техника. То, что мы не падаем в центр Земли под действием силы тяжести, также вызвано электромагнитным взаимодействием – отталкиванием между одноименно заряженными электронами в атомах, входящих в состав подошвы обуви и пола.
• Сильное ядерное взаимодействие . Притяжение между нуклонами в атомном ядре – нейтронами и положительно заряженными протонами, которое по силе превосходит электромагнитное отталкивание между одноименно заряженными протонами. Благодаря сильному взаимодействию существуют все химические элементы таблицы Менделеева. Ядерный взрыв.
• Слабое ядерное взаимодействие . Бета-распад и некоторые иные каналы распадов элементарных частиц.
Из этих 4 фундаментальных взаимодействий гравитация и электромагнетизм имеют бесконечный радиус действия, а сильное и слабое взаимодействие – весьма маленький радиус действия, ограниченный размерами атомного ядра. Пока не обнаружено других сил, которые могли бы побудить новые причинно-следственные связи.
А теперь научимся применять эти знания. Пример – ошибочность астрологии. Нет механизма причинно-следственного влияния планет и звезд на людей, которое бы стояло за астрологией. Луна вызывает приливы и отливы (гравитация), а Солнце – излучение (электромагнетизм). Планеты и тем более звезды не могут никак влиять на Землю и тем более на людей, даже космические лучи от взрывов сверхновых звезд пренебрежимы для жизни людей, хотя и регистрируемы приборами. Жизнь человека определяется его поступками, поступками других людей и явлениями окружающей среды, непосредственно касающимися человека в месте его жизни , а не в глубоком космосе. Жизнь человека зависит от его возможностей приспособления к окружающей среде и от его возможностей влияния на нее.
Не нужно перекладывать ответственность за свою жизнь на звезды или сверхествественные явления. Мы можем сами изменить свою жизнь. Что мы сделаем, то и будет.
4. Принцип достаточного основания Аристотеля, бритва Оккама
В главе 3 мы рассмотрели наличие в мире причиннос-ледственных связей в мире. Логическое мышление человека строится так, чтобы проследить за материальными причинно-следственными связями. При этом, если некая причина или несколько причин вызывают некое явление, то они являются достаточными и поэтому нет смысла для объяснения данного явления выдумывать новые причины . Этот принцип носит название принцип достаточного основания , он был разработан ещё великим древнегреческим ученым Аристотелем в IV веке до н. э.
Таким образом, из представления о причинно-следственных связях логически следует принцип достаточного основания Аристотеля.
Английский ученый Уильям Оккам в XIV веке сформулировал принцип Аристотеля следующим образом: "Для объяснения причин явлений не следует привлекать новые понятия без крайней необходимости". Эта формулировка принципа Аристотеля называется бритва Оккама.
Если явление имеет достаточные основания, то дополнительные объяснения явления – ложные, их изобретать не нужно. Лишние, не нужные, понятия как бы "срезаются бритвой" Оккама для упрощения картины мира. Все следует упрощать по мере возможности, не нужно ничего усложнять.
Великий английский ученый Исаак Ньютон сформулировал этот принцип так: "Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений… Природа проста и не роскошествует излишними причинами вещей". Другой альтернативной формулировкой принципа достаточного основания Аристотеля – бритвы Оккама – является ставшее крылатым выражение А.П.Чехова "краткость – сестра таланта". В англоязычной литературе этот принцип также известен как принцип KISS – Keep It Short and Simple – "поддерживай краткость и простоту".
Бритва Оккама используется в науке следующим образом: если какой-то факт может быть объяснён двумя способами, например, первым – через привлечение понятий А и В, а вторым
– через понятия А, В и С, и при этом оба способа дают одинаковый результат, то понятие C лишнее, и верным является первый способ (который может обойтись без привлечения лишних понятий).
Четырех фундаментальных сил природы – гравитации, электромагнетизма, сильного и слабого взаимодействий – достаточно для описания всего мира. Современная наука не нуждается в гипотезах о сверхестественных силах для объяснения любых явлений природы.
Даже от понятия "душа" мировая наука отказалась после того, как в позапрошлом веке – в 1863 году великий русский ученый, основоположник физиологии, И.М.Сеченов опубликовал свою знаменитую книгу "Рефлексы головного мозга", где объяснил все душевные явления с позиций материализма. Его имя сегодня носит Московская Медицинская Академия имени И.М.Сеченова. Современная наука об изучении мозга – нейрофизиология.
А если материальных причин достаточно для объяснения всех явлений мира, то все сверхъестественное не существует согласно принципу достаточного основания Аристотеля.
5. Мерило случайности совпадения, математико-статистическая обработка экспериментальных данных
Здесь нет смысла повторять теорию вероятностей и математическую статистику и лучше порекомендовать читателю изучить любой учебник по этой теме. Тем не менее следует кратко упомянуть основные моменты, ибо многие религиозные выводы делаются людьми, не знающими теорию вероятностей.
Люди часто делают ошибочные выводы, проведя всего лишь один опыт , совпадение в котором между предположением и экспериментом может оказаться случайным. Например, полно таких случаев, когда кто-то о чём-то помолился и вдруг это получил – не нужно на одном этом случайном совпадении делать религиозные выводы, ибо это некорректно с точки зрения теории вероятностей.
Важное качество верной теории – повторяемость, воспроизводимость результата.
Для того, чтобы исключить влияние фактора случайности, случайное совпадение, необходимо провести хотя бы несколько сотен аналогичных экспериментов. Только так можно обнаружить закономерность и исключить случайность. Именно поэтому никакая научная теория не может основываться на одном единственном опыте – нужны сотни аналогичных опытов, чтобы накопить статистически значимое количество данных . Например, можно провести 10 или 100 опытов для проверки высказывания "железо растворяется в соляной кислоте" и в 100 % случаев мы подтвердим его.
В любой области науки – в физике, химии, экономике и пр. – везде используется статистическая погрешность. Если мы хотим проверить закон Ома, то можно провести несколько сотен измерений разной силы тока и разного напряжения при разных сопротивлениях, чтобы убедиться в истинности закона Ома в проверенном диапазоне величин напряжения, сопротивления и силы тока. Или, например, при проведении маркетинговых исследований с опросом потребителей ни в коем случае нельзя строить маркетинговую стратегию компании на мнении одного или даже десяти потребителей. Потому что вероятность статистической ошибки будет очень высока. При проведении маркетинговых исследований лучше опросить, скажем, 1000 или более потребителей. После такого опроса отдел маркетинга компании получит более-менее объективные данные о потребности потребителей в данном товаре на данном сегменте рынка. И чем больше выборка – тем менее вероятна статистическая ошибка. Поэтому крупные компании тратят очень большие деньги на точные маркетинговые исследования с детальным опросом очень большого количества потребителей, чтобы тем самым сократить риски бизнеса и чтобы точно знать, что данный товар по данной цене купит такое-то количество потребителей на данном сегменте рынка, и следовательно, можно получить такую-то научно прогнозируемую прибыль. Следуя научному подходу – пониманию теории вероятностей и математической статистики – умный бизнес может прогнозировать свою прибыль, заранее расчитывать расходы на рекламу, которые точно окупятся и значительно снизить (практически ликвидировать) рыночные риски бизнеса.
Но статистическая ошибка будет всегда. Поэтому в точных науках результат даётся с погрешностью, например: х = (34 ± 2), CL = 95 %. Это означает, что на уровне достоверности 95 % величина х лежит в интервале от 32 до 36. И еще есть вероятность 5 % того, что величина х находится вне этого интервала. CL – confidence level – уровень достоверности (англ.).
Все случайные величины подчиняются распределению Гаусса в пределе при количестве элементов выборки, стремящемуся к бесконечности. Согласно распределению Гаусса, наиболее вероятная величина – среднее арифметическое бесконечно большой выборки. Однако реальные выборки отнюдь не бесконечно большие, а 100 или 1000 или любое иное число элементов. Причем, среднее арифметическое реальной выборки далеко не всегда равно среднему арифметическому бесконечно большой выборки.
Например, в некоем ресторане обычно около 1000 посетителей в месяц, а средняя сумма чека – 300 рублей. Но однажды там ещё 10 человек отметили свадьбу с суммой чека 120 000 рублей. Если мы подсчитаем среднее арифметическое за данный месяц, то у нас получится (300*1000 + 120 000)/1010 = 416 руб. Можно ли говорить, что "бизнес растёт"? Разумеется, нет. Потому что среднее арифметическое данной выборки за данный месяц – 416 руб. – сильно отличается от среднего арифметического более крупной выборки – за год, где оно равно 300 руб. Но что делать, если в данном конкретном случае у нас нет физической возможности увеличения объёма выборки для приближения её к распределению Гаусса?
Для решения этой задачи были введены другие мерила для нахождения средне-статистической величины, позволяющие в таких случаях подойти ближе к среднему арифметическому кривой распределения Гаусса – мода и медиана.
Мода – это наиболее часто встречающееся значение переменной. Мода позволяет выбирать в качестве среднего наиболее вероятное значение. В данном случае мода будет равна 300 руб.
Медиана – среднее по счету значение в ряду значений переменной, упорядоченному в порядке возрастания или убывания. Медиана позволяет отбрасывать как крайне большие, так и крайне малые значения переменной. В данном случае мы просто отбрасываем крайнее значение суммы чека и получаем, что медиана равна 300 руб.
ПРИМЕР . "Экстрасенсы". Рассчитаем вероятность случайного угадывания предмета эксрасенсами, не имеющую отношению к сверхестественным способностям. Допустим, у нас есть 3 коробки, и только в одной из них спрятан некий предмет, который экстрасенсы должны найти. Положим, что это – первая коробка. И у нас есть 1 экстрасенс. Чтобы вычислить вероятность, обратим внимание на то, что здесь есть 3 элементарных события – экстрасенс назвал первую коробку или вторую коробку или третью коробку. Их можно записать для наглядности таким образом:
1 0 0 – угадал