Оба эти вопроса могут быть решены только при сопоставлении всех симптомов, которые отмечаются при наличии одного, строго локализованного очага в коре головного мозга (или в подкорковых образованиях), с одной стороны, и тщательного анализа характера нарушений данной системы при различных по локализации мозговых поражениях - с другой.
Остановимся на иллюстрации этого положения.
84
Как уже было сказано ранее, для успешного осуществления сложного движения нужна его четкая пространственная организация, иначе говоря, четкое построение движения в системе пространственных координат. Это условие обеспечивается третичными (зрительно-кинестетически-вестибулярными) отделами теменно-затылочной коры, несоблюдение этого условия приводит к распаду пространственно-организованного движения. Возникает, однако, естественный вопрос: какие другие виды психической деятельности нарушаются при поражении тех же теменно-затылочных отделов мозга, обеспечивающих функцию пространственной организации процессов? Если мы получим ответ на этот вопрос и если мы сможем выделить одну группу процессов, страдающих при такой локализации очага, и другую группу процессов, которая при данном патологическом очаге остается сохранной, мы значительно приблизимся к выяснению того, в какие именно виды психической деятельности входит пространственный фактор, имеющий прямую связь с указанными теменно-затылочными отделами мозговой коры.
Факты, показывающие, что любой ограниченный корковый очаг поражения действительно нарушает протекание одних психических процессов, оставляя другие процессы в сохранности (явление, названное американским нейропсихологом Г.Л.Тэйбером принципом двойной диссоциации функций), в изобилии содержатся в материалах нейропсихологических исследований.
Так, ограниченный очаг в теменно-затылочной (или нижнетеменной) области левого полушария, приводящий к нарушению пространственной организации восприятия и движения, неизбежно вызывает и другие симптомы: такие больные, как правило, не могут ориентироваться в положении стрелок на часах или в координатах на географической карте; они не могут ориентироваться в плане клинического отделения, где они находятся; не могут решить даже относительно несложные арифметические примеры, смешивая, например, при вычитании из двузначного числа с переходом через десяток направление операций (решая пример 31 - 7, они правильно выполняют первый этап - от 30 отнимают 7 и получают 23, но затем не знают, направо или налево надо отложить оставшуюся единицу и какой окончательный ответ - "22" или "24" является правильным); наконец, они начинают испытывать серьезные затруднения в понимании ряда грамматических структур, включающих в свой состав известные логические отношения (например, "брат отца" и "отец брата", "весна после лета" или "лето после весны"), в то время как понимание других, более простых грамматических структур остается сохранным.
Однако указанный очаг не приводит к нарушениям таких процессов, как плавная речь, узнавание или воспроизведение музыкальных мелодий, смена последовательных элементов движения и т.д.
85
Все это показывает, что первая группа отмеченных выше процессов включает в свой состав "пространственный" фактор, в то время как вторая группа процессов этого фактора не включает и поэтому остается сохранной при поражении теменно-затылочных отделов коры.
Совершенно обратная картина наблюдается при локальных поражениях височной (слуховой) области коры. Поражения с такой локализацией, как мы увидим далее, приводят к нарушению организации слухового восприятия и делают невозможной организацию звуковых сигналов в последовательную ("сукцессивную") структуру. Именно в силу этого больные с такими поражениями оказываются не в состоянии четко воспринимать обращенную к ним речь и удерживать ее следы; плавная избирательная речь, как и слухоречевая память, оказывается у них серьезно нарушенной. Однако такие функции, как ориентировка в пространстве, пространственная организация движений, счетные операции, понимание определенных логико-грамматических отношений, остаются у них, как правило, сохранными.
Все это с полной отчетливостью показывает, что тщательный нейропсихологический анализ синдрома и той двойной диссоциации, которая возникает при локальных поражениях мозга, позволяет приблизиться к структурному анализу самих психологических процессов и выделить те факторы, которые входят в одни группы психических процессов и не входят в другие.
Как мы увидим далее, это позволяет вплотную подойти к решению вопроса о внутреннем составе психологических процессов, который оставался неразрешимым в условиях обычного психологического исследования, и, таким образом, разделить, казалось бы, сходные психологические процессы и сблизить, казалось бы, различные формы психической деятельности.
Проиллюстрируем это положение двумя примерами.
Для непредвзятого наблюдателя музыкальный и речевой слух могут казаться двумя вариантами одного и того же психологического процесса. Однако наблюдения над больными с ограниченными очаговыми поражениями мозга показывают, что разрушение определенных участков левой височной области приводит к выраженному нарушению речевого слуха (делая различение близких звуков речи совершенно недоступным), но сохраняет музыкальный слух неповрежденным. В наших публикациях есть описание одного выдающегося композитора, который после кровоизлияния в левую височную область перестал различать звуки речи и понимать обращенную к нему речь, но продолжал создавать блестящие музыкальные произведения (А. Р. Лурия, Л. С. Цветкова, Д. С. Футер, 1965).
Это означает, что столь близкие, казалось бы, психические процессы, как музыкальный и речевой слух, не только включают в свой состав разные факторы, но и опираются на работу различных мозговых зон.
86
Нейропсихологии известны также примеры, показывающие внутреннюю близость, казалось бы, полностью различных психологических процессов.
Вряд ли кто-нибудь сразу согласится с тем, что столь различные психологические процессы, как ориентировка в пространстве, счет и понимание сложных логико-грамматических структур, имеют принципиально общие звенья, которые позволяют объединить их в одну группу.
Однако поражение теменно-затылочных (нижнетеменных) отделов левого полушария почти неизбежно приводит к нарушению всех этих процессов, и больной с подобной локализацией очага не только испытывает заметные трудности в пространственной ориентировке, но и обнаруживает грубейшие дефекты в счете и в понимании сложных логико-грамматических структур.
Это показывает, что все указанные, казалось бы, столь различные функции включают общий фактор, и выделение этих общих факторов способствует гораздо более глубокому анализу структуры психологических процессов.
Нетрудно увидеть, что синдромный анализ позволяет не только уточнить вопрос о мозговой организации сложных психических процессов, но и вплотную подойти к их внутреннему строению.
Итак, каждая сознательная психическая деятельность представляет собой сложную функциональную систему, которая может нарушаться в разных звеньях и страдать при различных по локализации поражениях головного мозга (но по-разному); в ее состав включены различные факторы, изучение которых открывает новые пути для нейрофизиологического анализа внутреннего строения психических процессов.
Наблюдения над изменениями психических процессов, возникающими при локальных поражениях мозга, могут действительно стать одним из наиболее существенных источников наших знаний о мозговой организации психической деятельности. Однако правильное использование этого метода возможно лишь при условии отказа от концепции прямой локализации психических процессов в коре головного мозга и замены этой классической задачи другой, требующей анализа того, как именно меняется психическая деятельность при различных локальных поражениях мозга и какие именно факторы вносит каждый из аппаратов головного мозга в построение сложных форм психической деятельности.
Эта новая задача определяет генеральный путь нейропсихологии как учения о мозговой организации психических процессов человека.
Глава III
ТРИ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ БЛОКА МОЗГА
Мы уже говорили, что психические процессы человека являются сложными функциональными системами и что они не локализованы в узких, ограниченных участках мозга, а осуществляются при участии сложных комплексов совместно работающих мозговых аппаратов, каждый из которых вносит свой вклад в организацию этой функциональной системы. Вот почему становится необходимым выяснить, из каких основных функциональных единиц состоит мозг человека, как построена и какую роль играет каждая из них в осуществлении сложных форм психической деятельности.
Можно выделить три основных функциональных блока, или три основных аппарата мозга, участие которых необходимо для осуществления любого вида психической деятельности. С некоторым приближением к истине их можно обозначить как: 1) блок, обеспечивающий регуляцию тонуса и бодрствования; 2) блок получения, переработки и хранения информации, поступающей из внешнего мира; 3) блок программирования, регуляции и контроля психической деятельности.
Каждый из этих основных блоков имеет иерархическое строение и состоит по крайней мере из надстроенных друг над другом корковых зон трех типов: первичных (или проекционных), куда поступают импульсы с периферии или откуда направляются импульсы на периферию, вторичных (или проекционно-ассоциативных), где происходит переработка получаемой информации или подготовка соответствующих программ, и, наконец, третичных (или зон перекрытия), которые являются наиболее поздно развивающимися аппаратами больших полушарий и которые у человека обеспечивают наиболее сложные формы психической деятельности, требующие совместного участия многих зон мозговой коры.
Рассмотрим строение и функциональные особенности каждого из этих блоков головного мозга в отдельности.
1 БЛОК РЕГУЛЯЦИИ ТОНУСА И БОДРСТВОВАНИЯ
Для того чтобы обеспечивалось полноценное протекание психических процессов, человек должен находиться в состоянии бодрствования. Известно, что только в оптимальных условиях бодрствования человек может принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать свою деятельность и осуществлять контроль за протеканием своих психических процессов, корригируя ошибки и сохраняя направленность своей деятельности.
Хорошо известно, что в состоянии сна четкая регуляция психических процессов невозможна, всплывающие воспоминания и ассоциации приобретают неорганизованный характер, и направленное избирательное (селективное) выполнение психической деятельности становится невозможным.
О том, что для осуществления организованной, целенаправленной деятельности необходимо поддерживать оптимальный тонус коры, говорил еще И.П.Павлов, гипотетически утверждавший, что если бы мы могли видеть, как распространяется возбуждение по коре бодрствующего животного (или человека), мы наблюдали бы "светлое пятно", перемещающееся по коре мозга по мере перехода от одной деятельности к другой и олицетворяющее пункт оптимального возбуждения.
Развитие электрофизиологической техники позволило увидеть это "пятно" оптимального возбуждения: с помощью специального прибора - "топоскопа" М.Н.Ливанова (1962), дающего возможность одновременно регистрировать электрическую активность в 50-100 пунктах коры головного мозга, - можно наблюдать, как в коре мозга бодрствующего животного действительно возникает "пятно" оптимального возбуждения, как оно передвигается при переходе животного из одного состояния в другое и как в патологическом состоянии постепенно теряет свою подвижность, становится инертным или совсем угасает.
И. П. Павлов не только указал на необходимость оптимального состояния мозговой коры для осуществления организованной деятельности, но и открыл основные нейродинамические законы возникновения такого оптимального состояния. Как было показано многочисленными исследованиями павловской школы, процессы возбуждения и торможения, протекающие в бодрствующей коре, подчиняются закону силы, характеризуются определенной концентрированностью, уравновешенностью и подвижностью.
Эти основные законы нейродинамики неприложимы к состояниям сна или утомления. Это является результатом того, что в так называемых "тормозных", или "фазовых", состояниях тонус коры снижается и, как следствие, нарушается закон силы: слабые раздражители уравниваются с сильными по интенсивности вызываемых ими ответов ("уравнительная фаза") или даже превосходят их, вызывая более интенсивные реакции, чем те, которые вызываются сильными раздражителями ("парадоксальная фаза"), в отдельных случаях реакции сохраняются только в ответ на слабые
89
стимулы, в то время как сильные раздражители вообще перестают вызывать какие-либо ответы ("ультрапарадоксальная фаза"). Кроме того, по мере снижения тонуса коры нарушается нормальное соотношение возбудительных и тормозных процессов и та подвижность, которая необходима для протекания нормальной психической деятельности. Все это указывает на то, какое решающее значение имеет наличие оптимального тонуса коры для организованного протекания психической деятельности.
Возникает, однако, вопрос: какие аппараты мозга обеспечивают поддержание оптимального тонуса коры, о котором мы только что говорили? Какие участки мозга регулируют и изменяют тонус коры, сохраняя его на нужное время и повышая его, когда в этом возникает необходимость?
Одним из наиболее важных в этом плане открытий было установление того факта, что аппараты, обеспечивающие и регулирующие тонус коры, могут находиться не в самой коре, а в лежащих ниже стволовых и подкорковых отделах мозга и что эти аппараты находятся в двойных отношениях с корой, тонизируя ее и в то же время испытывая ее регулирующее влияние.
В 1949 г. два выдающихся исследователя - Мэгун и Моруцци - обнаружили, что в стволовых отделах головного мозга находится особое нервное образование, которое как по своему морфологическому строению, так и по своим функциональным свойствам приспособлено к тому, чтобы осуществлять роль механизма, регулирующего состояния мозговой коры, т. е. способно изменять ее тонус и обеспечивать ее бодрствование.
Это образование построено по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющиеся друг с другом короткими отростками. По сети этого образования, названного ретикулярной формацией, возбуждение распространяется не отдельными, изолированными импульсами, не по закону "все или ничего", а градуально, постепенно меняя свой уровень и, таким образом, модулируя состояние всего нервного аппарата (рис. 34).
Рис. 34. Схема активирующей ретикулярной формации
Одни из волокон ретикулярной формации направляются вверх, оканчиваясь в расположенных выше нервных образованиях - зрительном бугре, хвостатом теле, древней коре и, наконец, в тех образованиях новой коры, роль которых в организации сложной психической деятельности была отмечена в предьщущих главах. Эти образования были названы восходящей ретикулярной системой. Как обнаружили последующие наблюдения, она играет решающую роль в активации коры, в регуляции ее активности.
Другие волокна ретикулярной формации имеют обратное направление: они начинаются от более высоко расположенных нервных образований - новой и древней коры, хвостатого тела и ядер зрительного бугра - и направляются к расположенным ниже структурам среднего мозга, гипоталамуса и мозгового ствола. Эти обра-
90
зования получили название нисходящей ретикулярной системы. Они, как было установлено дальнейшими наблюдениями, ставят нижележащие образования под контроль тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модификация и модуляция состояний бодрствования.
Оба раздела ретикулярной формации составляют единую вертикально расположенную функциональную систему, единый саморегулирующийся аппарат, построенный по принципу рефлекторного круга, который может обеспечивать изменение тонуса коры, но который вместе с тем сам находится под регулирующим влиянием тех изменений, которые наступают в коре головного мозга. Это аппарат пластичного приспособления к условиям среды в процессе активной деятельности.
С открытием ретикулярной формации в нейрофизиологию был введен фактически новый принцип - вертикальной организации всех структур мозга - и завершился длительный период, когда интерес ученых, пытавшихся найти нервные механизмы психических процессов, был сосредоточен лишь на аппаратах коры головного мозга, работа которой рассматривалась как не зависящая от нижележащих, глубоких образований. Ретикулярная формация - первый функциональный блок головного мозга - аппарат, обеспечивающий регуляцию тонуса коры и состояний бодрствования, аппарат, позволяющий регулировать эти состояния соответственно поставленным перед организмом задачам.
91
Рис. 37. Активирующая роль раздражения ретикулярной формации на двигательную сферу (коленный рефлекс):
а- до раздражения ретикулярной формации; б -во время раздражения ретикулярной формации; в- после раздражения ретикулярной формации
(по Френчу)
Рис. 38. Развитие сна в результате перерезки путей активирующей ретикулярной формации (по Линдсли): а- активное состояние мозга в результате сохранения активирующих влияний ретикулярной формации на кору больших полушарий; электроэнцефалограмма бодрствования; б- состояние сна вследствие перерезки верхних отделов стволовой ретикулярной формации и прекращения активирующих влияний; электроэнцефалограмма сна