Прокариоты не имеют хлоропластов, но у них есть многочисленные тилакоиды, ограниченные плазматической мембраной. У фотосинтезирующих бактерий они трубчатые или пластинчатые либо имеют форму пузырьков или долек. У синезеленых водорослей тилакоиды представляют собой уплощенные цистерны, образующие сферическую систему или расположенные параллельно друг другу либо располагающиеся беспорядочно. В эукариотических растительных клетках тилакоиды образуются из складок внутренней мембраны хлоропласта. Хлоропласты от края до края пронизаны длинными тилакоидами стромы, вокруг которых в мелких чечевицеобразных хлоропластах (и только в них) группируются плотно упакованные и короткие тилакоиды гран. Стопки таких тилакоидов гран видны в световом микроскопе как зеленые граны величиной 0,3–0,5 мкм.
3.
Тилакоидные мембраны
Между гранами тилакоиды стромы сетевидно переплетены. Тилакоиды гран образуются из накладывающихся друг на друга выростов стромальных тилакоидов. При этом внутренние ( интрацистернальные) пространства многих или всех тилакоидов остаются связанными между собой.
Тилакоидные мембраны имеют толщину 7-12 нм и очень богаты белком (содержание белка – около 50 %, всего свыше 40 различных белков). В мембранах тилакоидов осуществляется та часть реакций фотосинтеза, с которой связано преобразование энергии, – так называемые световые реакции. В этих процессах участвуют две хлорофиллсодержащие фотосистемы I и II, связанные цепью транспорта электронов, и продуцирующая АТФ мембранная АТФаза.
Используя метод замораживания-скалывания , можно расщеплять мембраны тилакоидов между двумя слоями липидов. В этом случае с помощью электронного микроскопа можно видеть четыре поверхности: мембрану со стороны стромы, мембрану со стороны внутреннего пространства тилакоида, внутреннюю сторону липидного монослоя, прилегающего к строме, и внутреннюю сторону монослоя, прилегающего к внутреннему пространству. Во всех четырех случаях видна плотная упаковка белковых частиц, которые в норме пронизывают мембрану насквозь, а при расслоении мембраны вырываются из того или другого липидного слоя.
4.
Белковые комплексы
С помощью детергентов (например, дигитонина) можно выделить из тилакоидных мембран 6 различных белковых комплексов:
• I. Крупные ФСII-ССК-частицы, которые можно разделить на частицу ФСII и несколько одинаковых богатых хлорофиллом ССК-частиц (частиц светособирающего комплекса), которые "собирают" кванты света и передают их энергию частице ФСII,
• II. Частицы ФСI,
• III. Частицы с компонентами цепи транспорта электронов (в частности, цитохромами), оптически неотличимые от ФСI,
• IV. CF0 – закрепленная в мембране часть мембранной АТФазы величиной 2–8 нм; она, как и все названные выше частицы, представляет собой гидрофобный интегральный белок мембраны,
• V. CF1 – периферическая и легко отделяемая гидрофильная "головка" мембранной АТФазы. Комплекс CF0-CF1 действует так же, как F0-F1 в митохондриях,
• VI. Периферический, гидрофильный , очень слабо связанный фермент рибулозобисфосфат-карбоксилаза, в функциональном отношении принадлежащий строме.
ФСII-ССК находится в основном в тех местах, где мембраны соприкасаются с соседним тилакоидом, а CF0-CF1 – только там, где они не соприкасаются. Молекулы хлорофилла содержатся в частицах ФСI, ФСII и ССК. Они амфипатические, с гидрофильным дисковидным порфириновым кольцом и гидрофобным остатком фитола. Вероятно, порфириновые кольца лежат на поверхности мембраны (в строме, во внутреннем пространстве тилакоида или с обеих сторон), а фитольные остатки – в гидрофобных белковых частицах.
5.
Биохимический синтез в строме хлоропластов
В строме хлоропластов осуществляются процессы биохимического синтеза (фотосинтеза), в результате которых откладываются зерна крахмала (продукт фотосинтеза), пластоглобулы и кристаллы железосодержащего белка фитоферритина (накопление железа). Пластоглобулы состоят из липидов (главным образом гликолипидов) и накапливают хиноны: пластохинон, филлохинон (витамин К1) и токоферилхинон (витамин Е).
Вопрос 29. Генетическая система пластид
1.
Белковый состав стромы
В строме находятся ДНК, mРНК, tРНК, rРНК1, rРНК2, 5S-РНК и 70S-рибосомы. Как и в митохондриях, молекула ДНК замкнута в кольцо, несет гены с интронами и свободна от гистонов и негистоновых хромосомных белков. Имеется от 3 до 30 идентичных копий ДНК на каждый хлоропласт. Молекулы длиннее, чем в митохондриях (40–45, иногда до 160 мкм) и содержат больше информации : ДНК кодирует rРНК и tРНК, ДНК– и РНК-полимеразу, некоторые белки рибосом, а также комплексы CF0 и CF1, пластидные цитохромы и большинство ферментов теленового процесса фотосинтеза . Однако большая часть белков пластид кодируется в хромосомах.
2.
Характеристика лейкопласт
Лейкопласты – это бесцветные пластиды округлой, яйцевидной или веретенообразной формы в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Они содержат ДНК, зерна крахмала, пластоглобулы, единичные тилакоиды и пластидный центр.
Образование тилакоидов и хлорофилла чаще всего либо генетически подавлено (корни, эпидермис), либо тормозится отсутствием света (например, у картофеля: на свету лейкопласты зеленеют и превращаются в хлоропласты). Пластидные центры (проламеллярные тельца) состоят из скопления пузырьков или из сети разветвленных трубочек.
Лейкопласты в узком смысле неактивны и обычно имеют небольшие размеры (например, в ситовидных трубках, в эпидермисе). Чаще встречаются аминопласты, образующие крахмал из глюкозы и накапливающие его главным образом в запасающих органах (клубнях, корневищах, эпидермисе и т. п.).
3.
Пигменты
Хлоропласты являются причиной желтой, оранжевой и красной окраски многих цветков, плодов и некоторых корней. Они бывают округлыми, многогранными, чечевицеобразными, веретеновидными или кристаллоподобными, содержат пластоглобулы (часто в большом количестве), крахмальные зерна и белковые кристаллоиды, не имеют пластидного центра. Тилакоидов в них мало или совсем нет.
Пигменты – свыше 50 видов каротиноидов (например, виолоксантин у анютиных глазок, ликопин в помидорах, бета-каротин в моркови) – локализуются в пластоглобулах, трубчатых или нитевидных белковых структурах или образуют кристаллы.
Хромопласты первично нефункциональны. Их вторичная роль состоит в том, что они создают зрительную приманку для животных и тем самым способствуют опылению цветков и распространению плодов и семян.
Вопрос 30. Развитие пластид
1.
Характеристика пластид
Незрелые пластиды (пропластиды) имеют неправильную форму, окружены двумя мембранами и способны к амебоидному движению. Наиболее молодые пропластиды (до 50 нм) не имеют внутренних структур. В процессе развития они увеличиваются в размерах (до 1 мкм), синтезируют крахмальные зерна и кристаллы фитоферритина, в них образуются трубчатые или листовидные выпячивания внутренней мембраны.
2.
Влияние света на синтез
Для превращения пропластид в хлоропласты необходим свет. При синтезе белка, хлорофилла и липидов из выпячиваний мембраны в результате образования все новых складок и выростов, их перемещения и упаковки возникают тилакоиды стромы и гран.
В темноте процессы синтеза и формирование мембран прерываются . Образуется небольшое количество протохлорофиллида (предшественника хлорофилла), из выпячиваний мембран создается большей частью сетевидный пластидный центр , из пропластиды возникает лейкопластоподобный лишенный крахмала каротинсодержащий этиопласт. При освещении из протохлорофиллида образуется хлорофилл, а из пластидного центра – тилакоиды, и этиопласт превращается в хлоропласт.
Возникновение лейкопластов сходно с образованием этиопластов. Из хлоропластов часто формируются хромопласты (созревание плодов – помидоров, лимонов и т. п., изменение цвета листьев осенью). Тилакоиды и хлорофилл разрушаются, освобождающиеся и вновь синтезируемые каротиноиды откладываются в уже существующих или новых глобулах или в различных белковых структурах.
3.
Размножение пластид
Размножение пластид связано с репликацией ДНК и последующим делением пропластиды или хлоропласта надвое. Деление хлоропластов у многих водорослей является правилом, у мхов встречается достаточно часто, у высших растений наблюдается тем реже, чем старше хлоропласт. Пропластиды не только быстро делятся, но и могут возникать путем отпочковывания от хлоропластов или перестройки целых хлоро– или лейкопластов.
При половом размножении пропластиды у одних растений передаются обеими гаметами, у других – только яйцеклеткой. В последнем случае речь идет о чисто материнском наследовании информации пластид.
Вопрос 31. Филогенез митохондрий и пластид
1.
Роль митохондрии и пластид
Митохондрии и пластиды занимают в эукариотической клетке совершенно особое положение . Они имеют собственную генетическую систему, размножаются относительно независимо от деления всей клетки и ядра и отграничены от остальной протоплазмы двойной мембраной.
Согласно гипотезе эндосимбиоза , они являются потомками прокариот, сходных с бактериями или синезелеными водорослями, которые (вероятно, в результате фагоцитоза) проникли в гетеротрофные анаэробные клетки и стали в них жить как симбионты.
2.
Явление эндоцитоза у грибов
Моделью может служить явление эндоцитоза у некоторых грибов, жгутиковых и амеб: клетки синезеленых водорослей фагоцитируются, окружаются двумя мембранами (собственной внутренней и наружной, происходящей из плазмолеммы клетки-хозяина) и сохраняют способность к фотосинтезу.
Согласно другим представлениям, митохондрии и пластиды происходят из выпячиваний плазматической мембраны, которыми были окружены либо части еще примитивного генома, либо плазмиды.
Вопрос 32. Микрофиламенты и внутриклеточные движения
1.
Внутреннее движение микрофиламентов
Микрофиламенты представляют собой очень тонкие и длинные нитевидные белковые структуры, встречающиеся во всей цитоплазме. Они обусловливают вязко-эластичную, тиксотропную консистенцию цитоплазмы и внутриклеточные движения, включая высокоспециализированное движение (сокращение) фибрилл в мышечных волокнах.
Внутриклеточное движение возникает при взаимодействии микрофиламентов из актина (актиновых нитей) с миозином.
Глобулярный белок актин составляет 5-15 % всего клеточного белка и является важнейшим белком эукариотических клеток. Глобулярный актин (гамма-актин) полимеризуется в актиновые филаменты (F-актин), состоящие из двух закрученных друг около друга спиралей (диаметр – около 6 нм, длина – несколько мкм). Актин образует трехмерную сеть из большого числа нитей или же пучки из не менее чем 20 нитей. В клетке существует обратимое равновесие: гамма-актин-F-актин-пучки F-актина.
2.
Роль миозина в эукариотической клетке
Миозин в эукариотических клетках содержится в меньшем количестве (0,3–1,5 % клеточного белка), чем актин. Нитевидная молекула миозина (молекулярная масса более 450000, длина 150 нм) состоит из двух больших и нескольких малых субъединиц, образующих длинную двойную спираль; один конец последней несет две головки. Конец с головками катализирует расщепление АТФ (миозиновая АТФаза) и может специфически связываться с актином. Актин активирует АТФазу. При расщеплении АТФ освобождается энергия, необходимая для внутриклеточных движений.
В мышечных клетках молекулы миозина объединены в толстые (до 20 нм) миозиновые фрагменты (нити). В клетках немышечного типа такие филаменты не обнаружены (исключение составляют лишь некоторые амебы); однако после выделения из немышечных клеток миозин может полимеризоваться в филаменты. В мышечных клетках актиновые и миозиновые нити образуют сократимый актомиозиновый комплекс. Выделенный из клеток немышечного типа комплекс F-актина с миозином, не соединенный в филаменты, расщепляет АТФ и при этом сокращается. Это сокращение способен тормозить третий белок с большой молекулярной массой (270000), соединяющий нити актина в сеть.
3.
Взаимодействие компонентов в клетках немышечного типа
О взаимодействии компонентов в клетках немышечного типа существует следующее представление. Тормозящий белок образует вместе с актиновыми филаментами относительно жесткую сеть (цитоскелет). При локальном изменении среды (например, при повышении рН или концентрации Са2+) тормозящий белок отделяется от актина, а миозин в этом случае может присоединяться к концам актиновых нитей; филаменты смещаются относительно друг друга и объединяются в пучки, что приводит к сокращению.
4.
Течение протоплазмы в эукариотических клетках
Течение протоплазмы наблюдается почти во всех эукариотических клетках (его скорость составляет 1–6 см/ч). Органеллы перемещаются вместе с протоплазмой, не течет только эктоплазма. Этот процесс лежит в основе амебоидного движения . В растительных клетках может создаваться бесконечный ток протоплазмы вокруг центральной вакуоли. У амеб происходят локальные сокращения сети из актиновых (и миозиновых, если они имеются) филаментов, благодаря чему эндоплазма оттесняется в другой участок клетки. В гигантских клетках некоторых водорослей с бесконечным вращательным течением протоплазмы пучки актиновых филаментов лежат на границе экто– и эндоплазмы – именно там, где, как полагают, должны действовать движущие силы.
5.
Роль микрофиламентов в перемещении хлоропластов
Микрофиламенты ответственны также за перемещение хлоропластов (которые могут изменять свое положение в зависимости от освещения), клеточных ядер, пузырьков; они участвуют в фагоцитозе (но, вероятно, не в пино– или экзоцитозе), в образовании перетяжки при клеточном делении (здесь действует кольцо из пучков микрофиламентов, опоясывающих клетку), а также, возможно, в движении хроматид и хромосом при делении ядра.
Что касается прокариот, то у синезеленых водорослей, способных к скользящему движению , и у бактерий существуют микрофиламенты (диаметром 4–6 нм) неизвестной химической природы, актиновые же нити имеются среди бактерий только у микоплазм, которые тоже обладают скользящим движением.
Вопрос 33. Трубчатые (тубулярные) структуры
1.
Строение микротрубочки
Длинные и тонкие трубчатые образования – это, с одной стороны, свободные микротрубочки в цитоплазме, а с другой – структурные элементы центриолей, базальных телец, нитей веретена и жгутиков.
Микротрубочки состоят из тубулина , занимающего по количеству второе (после актина) место среди белков эукариотических клеток. Молекула его представляет собой димер длиной 8 нм из субъединиц, ковалентно связанных дисульфидными мостиками, – гликопротеидов альфа– и бета-тубулина (молекулярная масса каждого – 55000).
Димеры нековалентно соединены в нити – протофиламенты. Каждая микротрубочка (диаметром в 24 нм и длиной в несколько микрометров) построена из 13 протофиламентов и небольшого числа молекул низкомолекулярных тау-белков и высокомолекулярных ассоциированных белков.
2.
Цитоплазматические центры
Для образования свободных микротрубочек в клетке имеется небольшое число (чаще всего 1–2) цитоплазматических центров – организаторов микротрубочек. Это плотные, аморфные, иногда зернистые, волокнистые или иного строения (со спиральными или трубчатыми элементами) участки цитоплазмы. Они осуществляют синтез микротрубочек до этапа коротких комплексов, сходных с протофиламентами (инициация). Удлинение (полимеризация) происходит спонтанно за счет обильного клеточного запаса димерного тубулина. Равновесие димеры тубулина (микротрубочки обратимо, при делении ядра (в профазе) большинство микротрубочек растворяется.
3.
Роль микротрубочек в образовании сети в клетке
В клетке микротрубочки могут образовывать сеть . Часто они лежат параллельно плазматической мембране в эктоплазме (в растительных клетках и эритроцитах). Жесткие трубочки могут образовывать своего рода цитоскелет, благодаря которому при отсутствии клеточной стенки клетка может сохранять определенную форму. При внутриклеточных движениях , вызываемых микрофиламентами, микротрубочки могут определять направление движения (например, при транспорте пузырьков Гольджи). В нервных волокнах продольно расположенные микротрубочки (называемые здесь нейротубулами) представляют собой один из главных компонентов цитоплазмы. В прокариотических клетках тубулина нет. Отдельные сообщения о наличии микротрубочек у бактерий следует считать сомнительными.
Вопрос 34. Центриоли и базальные тела. Жгутики и реснички
1.
Функция центриолей
В большинстве животных клеток и в некоторых клетках растений (в клетках, образующих сперматозоиды, а также у некоторых водорослей и грибов) около ядра имеется центриоль. Это образование похоже на полый цилиндр (диаметр – около 150 нм, длина – 300–500 нм) со стенкой из 27 микротрубочек, расположенных в виде 9 триплетов. Незрелые центриоли (процентриоли) состоят из 9 одиночных микротрубочек, а позднее – из 9 двойных трубочек (дублетов).
Центриоли – это центры обогащения для центров-организаторов микротрубочек, которые, в свою очередь, образуют плотную перицентриолярную оболочку. Перицентриолярные центры-организаторы продуцируют центриоли и базальные тельца, а во время деления ядра – нити веретена. Базальные тельца могут также формироваться цитоплазматическими центрами-организаторами. Вновь образованная центриоль часто располагается перпендикулярно к старой. К началу деления ядра центриоли разделяются и расходятся к противоположным полюсам клетки.
2.
Роль жгутиков
Жгутики и реснички представляют собой подвижные цитоплазматические отростки , служащие либо для передвижения всего организма (у бактерий, водорослей, грибов, ресничных червей и др.), либо репродуктивных клеток (изогамет, спермиев, зооспор), либо для транспорта частиц и жидкостей (например, реснички у мерцательных клеток слизистой носа и трахеи, яйцеводов и т. д.).