(Не)совершенная случайность. Как случай управляет нашей жизнью - Леонард Млодинов 18 стр.


Одним из первых предположение о том, что для разных типов измерений характерны одни и те же особенности, выдвинул Даниил Бернулли, племянник Якоба Бернулли. В 1777 г. он уподобил случайную ошибку в астрономическом наблюдении отклонениям в траектории выпущенной из лука стрелы. В обоих случаях, рассуждал он, цель - истинное значение измеряемой переменной или же "яблочко" мишени - располагается где-то посреди, а наблюдаемые результаты группируются вокруг нее, причем большинство должны лежать в окрестностях цели, и лишь немногие выпадают за их пределы. Закон, который Бернулли предложил для описания этого распределения, оказался неверен, однако важно само понимание того, что распределение ошибок лучника может быть сходно с распределением ошибок в наблюдениях астрономов.

Идея о том, что распределение ошибок подчиняется некому универсальному закону, который называют законом случайного распределения ошибок, является основополагающей для теории измерения. И вот что примечательно: допущение состоит в том, что при условии удовлетворения определенных условий довольно общего характера установить истинное значение некоторой переменной на основе ряда измерений можно с использованием одного и того же математического аппарата. Если в дело вступает универсальный закон, то задача установления истинного положения небесного тела на основе ряда наблюдений астрономов приравнивается к задаче нахождения центра мишени на основе дырочек от стрел или определения "качества" вина на основе ряда экспертных оценок. Именно поэтому математическая статистика - последовательная и согласованная область, а не просто набор трюков: неважно, осуществляете ли вы ряд измерений для того, чтобы установить положение Юпитера в 4 часа утра на Рождество или средний вес булок с изюмом, выходящих с конвейера, распределение ошибок будет одним и тем же.

Однако отсюда не следует, что случайная ошибка - единственный вид ошибок, которые могут повлиять на измерение. Если половина дегустаторов предпочитает красное вино, а другая половина - белое, однако во всех остальных отношениях они сходятся в своих суждениях (и предельно последовательны в их вынесении), то оценка каждого конкретного вина не будет определяться законом случайного распределения ошибок: распределение получится резко двугорбым, причем причиной появления одного из пиков станут любители красного вина, а другого - любители белого. Но даже в тех случаях, когда применимость закона случайного распределения ошибок не столь очевидна (начиная от футбольного тотализатора{144} и заканчивая измерением коэффициента интеллекта), зачастую он все же оказывается применим. Много лет назад мне в руки попали несколько тысяч регистрационных карточек покупателей компьютерной программы, которую разработал для восьми- и девятилетних школьников мой приятель. Продажи шли не так хорошо, как ожидалось. Кто же покупал программу? После некоторых подсчетов я установил, что наибольшее число пользователей приходится на семилетних, указывая на нежелательное, но не то чтобы неожиданное расхождение. Но вот что самое удивительное: когда я построил гистограмму зависимости количества пользователей от возраста, взяв семь лет за среднее значение, я обнаружил, что построенный мною график принял крайне знакомую форму - форму закона случайного распределения ошибок.

Одно дело - подозревать, что лучники и астрономы, химики и маркетологи сталкиваются с одним и тем же законом распределения ошибок, и совсем другое - самому натолкнуться на частный случай этого закона. Подталкиваемые необходимостью анализировать данные астрономических наблюдений ученые, такие как Даниил Бернулли и Лаплас, постулировали в конце XVIII в. несколько вариантов закона, оказавшихся неверными. Однако выяснилось, что математическая функция, верно отражающая закон случайного распределения ошибок, - колоколообразная кривая - все это время была у них под носом. За много десятилетий до них она была открыта в Лондоне в контексте решения совсем иных задач.

Однако нормальное распределение вернул из небытия Лаплас, наткнувшийся на работу Гаусса в 1810 г., вскоре после того, как подал в Академию наук статью с доказательством так называемой центральной предельной теоремы, гласящей, что сумма большого количества независимых случайных величин имеет распределение, близкое к нормальному. Например, предположим, что вы выпекаете 100 буханок хлеба, каждый раз основываясь на рецепте, по которому должны получаться буханки весом в 1000 граммов. Но иногда вы случайно добавляете то чуть меньше, то чуть больше муки или молока, а иногда чуть меньше или чуть больше жидкости испаряется за время нахождения буханки в печи. В конечном счете в силу каждой из множества возможных причин вес буханки может вырасти или уменьшиться на несколько граммов, и в этом случае центральная предельная теорема утверждает, что итоговый вес буханок будет варьировать в соответствии с законом нормального распределения. Читая работу Гаусса, Лаплас сразу же понял, что может использовать его открытие в целях совершенствования собственной работы, а его собственная работа, в свою очередь, намного убедительнее, чем это удалось Гауссу, доказывает: нормальное распределение является отражением закона распределения ошибок. Лаплас немедленно опубликовал краткое продолжение статьи, посвященной центральной предельной теореме. В наши дни эта теорема и закон больших чисел - две наиболее важных наработки в рамках теории случайности.

Назад Дальше