Галилей и платонизм: против физики Аристотеля. Этот же тезис единства подлунного и надлунного мира становится основным для Галилея (ит. Galileo Galilei, 1564–1642), который также критиковал воззрения перипатетиков. Галилей избирает форму платоновского диалога в "Диалоге о двух главнейших системах мира – Птолемеевой и Коперниковой" (опубл. в 1632 г.), где носителем геоцентрической точки зрения Аристотеля, Птолемея и университетских перипатетиков является Симпличио, а устами Сальвиати говорит Галилей, сторонник Коперника. Сальвиати в первую очередь критикует Аристотеля и схоластику. Он реинтерпретирует не только Платона, но метод Аристотеля:
Симпличио. Аристотель, делая главным своим основанием рассуждение a priori, доказывал необходимость неизменяемости неба своими естественными принципами, очевидными и ясными; и то же самое он устанавливал после этого a posteriori путем свидетельства чувств и древних преданий.
Сальвиати. То, что вы говорите, является методом, которым он изложил свое учение, но я не думаю, чтобы это был метод его исследования <…> он сначала старался путем чувственных опытов и наблюдений удостовериться, насколько только можно, в своих заключениях, а после этого изыскивал средства доказать их, ибо обычно именно так и поступают в доказательных науках; это делается потому, что если заключение правильно, то, пользуясь аналитическим методом, легко попадешь на какое-нибудь уже доказанное положение или приходишь к какому-нибудь началу, известному самому по себе; в случае же ложного заключения можно идти до бесконечности, никогда не встречая никакой известной истины, пока не натолкнешься на какую-нибудь невозможность или очевидный абсурд.
Фактически Галилей обосновывает принцип восхождения от опыта и наблюдений к умозаключениям и распространение этих выводов на остальные случаи, что мы ранее видели у Кеплера относительно Платона, но Галилей распространяет это положение и на метод Аристотеля: "У нас в наш век есть такие новые обстоятельства и наблюдения, которые, в этом я нисколько не сомневаюсь, заставили бы Аристотеля, если бы он жил в наше время, переменить свое мнение. Это с очевидностью вытекает из самого способа его философствования: ведь если он считает в своих писаниях небеса неизменными и т. д., потому что не наблюдалось возникновения чего-нибудь нового или распадения чего-нибудь старого, то он попутно дает понять, что если бы ему пришлось увидеть одно из подобных обстоятельств, то он вынужден был бы признать обратное и предпочесть, как это и подобает, чувственный опыт рассуждению о природе…".
На основании этого высказывания Галилей доказывает единство подлунного и надлунного мира: "Утверждение "небо неизменно, так как на Луне или на другом небесном теле не видно тех изменений, которые наблюдаются на Земле", не имеет решительно никакой силы". Астроном убежден, что Аристотель согласился бы и с этим тезисом, который опровергает его дихотомию физического и метафизического миров: "Вещи, видимые в небесах как в наше, так и в прошлое время, таковы, что могут дать полное удовлетворение всем философам; ибо как в отдельных телах, так и вообще в небесном пространстве наблюдались явления, подобные тем, которые у нас называются возникновением и уничтожением, так как выдающиеся астрономы наблюдали, как многие кометы возникали и разрушались в областях более высоких, чем орбита Луны, не говоря уже о новых звездах 1572 и 1604 годов <…> гораздо более высоких, чем все планеты; и на лике самого Солнца, благодаря телескопу, видно возникновение и распадение плотных и темных материй, по внешности очень похожих на облака над ликом вокруг Земли <…>. Что, думаете вы, синьор Симпличио, сказал бы и сделал Аристотель, если бы он видел все это?".
Зрение оказывается решающим аргументом для Галилея, и он экстраполирует свое отношение и на методологию Аристотеля, включая его в контекст возрождения античной мудрости, становясь ее продолжателем и интерпретатором. Ошибки в астрономических представлениях он связывает с существовавшей ранее ограниченностью человеческого глаза, которая сейчас компенсирована возможностями телескопа: "Раз вы не видите изменений на небе, где, если бы они и были, вы не могли бы их видеть из-за большого расстояния, раз вы не имеете сообщений, так как и иметь их нельзя, то вы не можете делать вывода, что их там нет". Видимое свидетельство приравнивается к вербальному логическому построению, столь ценимому перипатетиками. З. А. Сокулер отмечает, что "значительная часть отстаиваемых Галилеем научных тезисов касается явлений, которые невозможно наблюдать непосредственно, будь то реальное движение Земли или движение тела при отсутствии сопротивления среды. Задача Галилея состоит в том, чтобы вывести защищаемую им теорию из состояния "эмпирической невесомости". Для этого он должен подготовить своих читателей, чтобы они смогли увидеть в том, что доступно наблюдению и что подчас является для них вполне привычным, то, что недоступно непосредственному наблюдению. Надо изменить "способ видения"".
Но проблема в том, что перипатетики признавали чувственное свидетельство вторичным по отношению к логике и высказываниям Аристотеля, поэтому вероятность методологической точки совпадения была ничтожна, о чем и свидетельствует Сагредо: "Анатом показал, как нервы выходят из мозга, проходят в виде мощного ствола через затылок, затем тянутся вдоль позвоночника, разветвляются по всему телу и в виде только одной тончайшей нити достигают сердца. Тут он обернулся к одному дворянину, которого знал как философа-перипатетика <…>, и спросил его, удовлетворен ли он теперь, и убедился ли, что нервы идут от мозга, а не от сердца. И этот философ, задумавшись на некоторое время, ответил: "Вы показали все это так ясно и ощутимо, что если бы текст Аристотеля не говорил обратного, – а там прямо сказано, что нервы зарождаются в сердце, – то необходимо было бы признать это истиной"<…> то, что вы говорите, ничуть не уменьшает необычайности ответа перипатетика: против столь убедительного чувственного опыта он приводит не другие опыты или соображения Аристотеля, а только лишь авторитет и чистое Ipse dixit [он сказал]".
Галилей оспаривает базовый тезис Аристотеля, на котором основывается его дуальная концепция границы между физическим и метафизическим мирами в зависимости от геометрической формы траектории движения объекта: "Он [Аристотель] начал свое рассуждение превосходно и методически, но, имея в виду скорее достигнуть некоторой конечной цели, заранее установившейся у него в уме, чем придти туда, куда прямо вел весь ход рассуждения <…> он выводит, исходя из совершенства окружности по сравнению с прямой линией и называя окружность совершенною, а прямую линию – несовершенною <…>. Это – краеугольный камень, основа и фундамент всего аристотелева мироздания; на нем основаны все другие свойства. Не тяжелое и не легкое, не возникающее, нетленное и неподдающееся никаким изменениям, кроме перемены места, и т. д. – все эти состояния, утверждает он, присущи телу простому и движущемуся круговыми движениями, а противоположные свойства: тяжесть, легкость, тленность и т. д., он приписывает телам, естественно движущимся прямолинейным движением. Поэтому, всякий раз как в основном положении обнаруживается какая-нибудь ошибка, можно с полным основанием сомневаться и во всем остальном, как воздвигнутом на этом фундаменте".
А. Койре пишет, что противостояние между платониками и аристотеликами разворачивалось в споре о доминанте математики и логики, как последней инстанции в доказательстве, и в этой связи полагает, что Кеплер, Галилей, Ньютон искренне считали себя последователями Платона: "Этот упор на роль математики, которая прибавляется к логической методологии Зарабеллы, на мой взгляд, совершенно недвусмысленным образом составляет содержание научной революции XVII в.; что же касается научной мысли эпохи, то роль математики является разделительной чертой между сторонниками Платона и Аристотеля".
Галилей предлагает вернуться к концепции Платона: "Итак, мы можем сказать, что прямолинейное движение может доставлять материал для сооружения, но раз последнее готово, то оно или остается неподвижным, или, если и обладает движением, то только круговым. Мы можем идти и дальше и признать вместе с Платоном, что тела во Вселенной, после того как они были сотворены и вполне установлены, были приведены на некоторое время своим творцом в прямолинейное движение, но что потом, когда они достигли известных предназначенных им мест, они были пущены одно за другим по кругу и перешли от движения прямолинейного к круговому, в котором они затем удержались и пребывают по сие время".
Геометрия и математика в сочетании с физикой движения и физическими свойствами предметов оказывается основой метода Галилея, но даже спустя 100 лет после Дюрера ему приходится в полемике с перипатетиками отстаивать их познавательный статус относительно физических тел:
Сагредо. …попытка трактовать естественные проблемы без геометрии есть попытка сделать невозможное.
Сальвиати. Синьор Симпличио, однако, этого не скажет, хотя я не думаю, чтобы он был из числа тех перипатетиков, которые отговаривают своих учеников изучать математику как нечто такое, что вредит рассудку и делает его менее способным к созерцанию.
Симпличио. Я не сделал бы такого упрека Платону, хотя и сказал бы вместе с Аристотелем, что он слишком погружается в свою любимую геометрию и слишком увлекается ею. Ведь, в конце концов, эти математические тонкости, синьор Сальвиати, истинно абстрактны, в приложении же к чувственной и физической материи они не оправдываются. Так, например, пусть математики доказывают на основании своих принципов, что sphaera tangit planum inpunctо – положение, подобное нашему, но, как только дело дойдет до материи, все происходит иначе; то же самое хочется мне сказать об этих углах касания и пропорциях; они все ни к чему, когда дело доходит до вещей материальных и чувственных.
Последующий диалог посвящен демонстрации Сальвиати возможностей применения математических методов относительно физических объектов. Тем не менее Симпличио настаивает на разделении применения математических методов относительно физических и метафизических объектов и рассматривает математическую точность как когнитивную помеху не только для чувственного, но и философского познания:
Симпличио. Эти умозрения <…> кажутся мне теми геометрическими тонкостями, за которые Аристотель упрекает Платона, обвиняя его в том, что слишком усердные занятия геометрией удалили его от настоящего философствования; я знавал и слушал величайших философов-перипатетиков, которые советовали своим ученикам не заниматься математическими науками, так как они делают ум придирчивым и неспособным к правильному философствованию, – правило, диаметрально противоположное правилу Платона, который не допускал к философии того, кто не овладел предварительно геометрией.
Сальвиати же придает высокий познавательный статус математике, которая способна приблизить человека к божественному разуму: "Я утверждаю, что человеческий разум познает некоторые истины столь совершенно и с такой абсолютной достоверностью, какую имеет сама природа; таковы чистые математические науки, геометрия и арифметика; хотя божественный разум знает в них бесконечно больше истин, ибо он объемлет их все, но в тех немногих, которые постиг человеческий разум, я думаю, его познание по объективной достоверности равно божественному, ибо оно приходит к пониманию их необходимости, а высшей степени достоверности не существует".
В диалогическом дискурсе сторонник схоластики как "правильной философии", выстроенной исключительно по законам логики, рассматривает экспансию математических и геометрических методов как возрождение философии Платона, тогда как Сальвиати (носитель голоса Галилея) не только исследует и продолжает философские принципы Платона, но и использует некоторые возможности наблюдения, практиковавшиеся Аристотелем, пытаясь соединить математику и физику: "Сальвиати <…> то, что пифагорейцы выше всего ставили науку о числах и что сам Платон удивлялся уму человеческому, считая его причастным божеству потому только, что он разумеет природу чисел, я готов присоединиться к этому мнению; но я никоим образом не поверю, чтобы тайны, которые побуждали Пифагора и его последователей так высоко ценить науку о числах, состояли из тех глупостей, которые устно и письменно распространяются среди людей невежественных. Напротив, мне известно, что пифагорейцы, не желая выносить столь удивительные вещи на посмеяние и издевательство толпы, осуждали, как кощунство, обнародование наиболее скрытых свойств чисел и найденных ими несоизмеримых и иррациональных величин и утверждали, что тот, кто будет распространять сведения о них, подвергнется мучениям в загробном мире…". Знание о числах оказывается сакральным, недоступным профану, требующим научения. Галилей указывает на ограниченность понимания математики перипатетиками, которые использовали рациональные числа, тогда как природу божественного бесконечного возможно выразить и понять только иррациональным числом.
Галилей принимает идею Платона о том, что посредством математики человеческий ум способен познать божественную истину, но если для человека это путь, то для Бога – интуиция, не развертывающаяся во времени. Причем он воспроизводит платоновскую логику восхождения из тьмы незнания к божественному свету, опираясь на достоверно доказанные факты, способные привести к обобщениям универсального свойства: "Истина, познание которой нам дают математические доказательства, та же самая, какую знает и божественная мудрость; но я охотно соглашаюсь с вами, что способ божественного познания бесконечно многих истин, лишь малое число которых мы знаем, в высшей степени превосходит наш; наш способ заключается в рассуждениях и переходах от заключения к заключению, тогда как его способ – простая интуиция; если мы, например, для приобретения знания некоторых из бесконечно многих свойств круга начинаем с одного из самых простых и, взяв его за определение, переходим путем рассуждения к другому свойству, от него – к третьему, а потом – в четвертому и так далее, то божественный разум простым восприятием сущности круга охватывает без длящегося во времени рассуждения всю бесконечность его свойств <…>. Но это и для человеческого разума не совсем неведомо, хотя окутано глубоким и густым мраком: он отчасти рассеивается и проясняется, если мы становимся хозяевами каких-нибудь твердо доказанных заключений и настолько овладеваем ими, что можем быстро продвигаться среди них".
Галилей, как и Николай Кузанский, признает ограниченность человеческого ума в познании бесконечного из-за протяженности познания во времени, что вынуждает его продвигаться по ступеням, но он восхищается возможностями разума и его достижениями: "Те переходы, которые наш разум осуществляет во времени и двигаясь шаг за шагом, божественный разум пробегает, подобно свету, в одно мгновение; а это то же самое, что сказать: все эти переходы всегда имеются у него в наличии. Поэтому я делаю вывод: познание наше и по способу, и по количеству познаваемых вещей бесконечно превзойдено божественным познанием; но на этом основании я не принижаю человеческий разум настолько, чтобы считать его абсолютным нулем; наоборот, когда я принимаю во внимание, как много и каких удивительных вещей было познано, исследовано и создано людьми, я совершенно ясно сознаю и понимаю, что разум человека есть творение Бога и притом одно из самых превосходных".