Бозон Хиггса. От научной идеи до открытия частицы Бога - Джим Бэгготт 13 стр.


Это был довольно натянутый компромисс, и Манна с Клайном одолевали глубокие сомнения. Руббиа, понимая, что физики ЦЕРНа тоже накапливают массу данных, сильно торопился . Манн и Клайн слишком хорошо осознавали, что подобное напряжение может легко привести к самообману, к убеждению в существовании чего-то, чего на самом деле не существовало. Они призывали к осмотрительности.

Известия об успехе физиков Национальной ускорительной лаборатории достигли ЦЕРНа в июле 1973 года.

В письме Лагарригу Руббиа заявил, что они накопили "около ста однозначных событий" [с нейтральными токами] . Дальше он предложил обеим группам опубликовать данные о своих находках одновременно. Лагарриг вежливо отказался. Физики ЦЕРНа установили истинно безмюонные события в столкновениях мюонных нейтрино с нуклонами и оценили отношение событий с нейтральными токами к событиям с заряженными как 0,21. Для столкновений с мюонными антинейтрино отношение составило 0,45. После этого физики объявили, что наконец-то нашли слабые нейтральные токи, и отправили статью в журнал Physics Letters. Журнал опубликовал ее в сентябре.

По расчетам группы Национальной ускорительной лаборатории, отношение нейтральных к заряженным токам для столкновений с мюонным нейтрино и антинейтрино составляло 0,29, что вполне согласовалось с результатами ЦЕРНа .

В этот критический момент у Руббиа истекла американская виза, и, хотя он был профессором в Гарварде, ему грозила депортация. На апелляционном слушании в Службе иммиграции и натурализации США он вышел из себя. Не прошло и суток, как он уже был на борту самолета, улетающего из страны.

Без Руббиа сотрудники Национальной лаборатории пошли на попятную. Их статью, представленную в журнал Physical Review Letters в августе, отвергли рецензенты, озабоченные тем, что не была как следует решена проблема исключения ошибочных безмюонных событий. Тогда Клайн и Манн перестроили детектор, намереваясь решить вопрос так или иначе.

Истинные безмюонные события сразу же исчезли, а отношение нейтральных к заряженным токам упало всего до 0,05. Физики Национальной ускорительной лаборатории убедились, что предыдущие результаты были заблуждением.

Руббиа был также заметной фигурой в ЦЕРНе и решил поднять шум. Он сказал генеральному директору ЦЕРНа Виллибальду Йенчке, что коллектив Гаргамеля совершил большую ошибку. ЦЕРН по-прежнему был в глубокой тени по сравнению с более известными американскими соперниками, и его репутация в мире пострадала из-за предыдущих промахов. Многие европейские физики склонялись к мнению, что результаты Гаргамеля ошибочны, и даже один из ведущих физиков ЦЕРНа поставил половину своего винного погреба на неверность результатов. Йенчке пришел в ужас при мысли, что репутация ЦЕРНа снова пострадает, и созвал физиков Гаргамеля на совещание. Оно было похоже на допрос в инквизиции.

Однако физики Гаргамеля, хотя их и потрясло такое развитие событий, упорно стояли на своем. Они не собирались отказываться от своих выводов. Перкинс столкнулся с Йенчке в церновском лифте и подбодрил его. "Я знал, что группа много раз проверяла анализ событий, и почти целый год мы искали другое объяснение для наблюдаемых событий, но безуспешно, – сказал Перкинс. – Поэтому я считал, что результат абсолютно надежен и [Йенчке] надо просто не обращать внимания на слухи из-за Атлантики. Не знаю, успокоили его мои слова или нет, но из лифта он вышел с улыбкой" .

Руббиа вернулся в Национальную ускорительную лабораторию в начале ноября, и тамошняя группа стала работать над совсем другой статьей, где заявлялось, что, вопреки последним отчетам ЦЕРНа и предсказаниям электрослабой теории, слабые нейтральные токи не найдены.

Дальше случился довольно неуклюжий разворот на 180 градусов. В середине декабря 1973 года физики Национальной ускорительной лаборатории поняли, что их детекторы ошибочно установили пионы, образующиеся в других столкновениях с нейтрино, как мюоны. Из-за этого количество безмюонных событий буквально свелось на нет. Слабые нейтральные токи вернулись. Клайну пришлось признать, что "вполне возможно, что данные говорят о безмюонном сигнале порядка 10 процентов" . Он не мог найти, что бы заставило эти события исчезнуть. Группа Национальной ускорительной лаборатории решила снова отправить в журнал свою первоначальную статью, внеся в нее соответствующие изменения. Статья вышла в Physical Review Letters в апреле 1974 года.

Некоторые физики в шутку называли открытие "переменными нейтральными токами".

В середине 1974 года другие лаборатории подтвердили результат, и путаница рассеялась. Слабые нейтральные токи стали экспериментальным фактом.

Однако следствия этого открытия оказались даже еще важнее. Слабые нейтральные токи подразумевали существование "тяжелых протонов", ответственных за перенос слабого взаимодействия. И если при распаде странных частиц нельзя было установить нейтральных токов, то причиной должно было быть то, что их подавляет механизм ГИМ.

Иными словами, должен существовать четвертый кварк.

7
Значит, это и есть W-частицы

Глава, в которой физики формулируют квантовую хромодинамику, открывают очарованный кварк и находят W– и Z-частицы именно там, где и предсказывали

Наконец-то фрагменты головоломки стали складываться. Оказалось, что загадка существования точечных частиц, свободно движущихся внутри нуклонов, что обнаружилось в экспериментах по глубоко неупругому рассеянию в Стэнфордском центре ускорителей, совсем не загадка, а прямое следствие природы сильного ядерного взаимодействия, которое ведет себя вопреки очевидному.

Представляя себе характер взаимодействия между двумя частицами, чаще всего мы вспоминаем о таких примерах, как гравитация и электромагнетизм, в которых чем ближе частицы друг к другу, тем взаимодействие между ними сильнее . Но сильное ядерное взаимодействие ведет себя совсем по-другому. Его сила проявляется в так называемой асимптотической свободе. В асимптотическом пределе нулевого разделения между двумя кварками они перестают взаимодействовать и становятся полностью "свободными". Однако чем больше они отделяются друг от друга, подходя к границам нуклона, тем крепче их держит сильное взаимодействие и не пускает наружу.

Тинг предпочитал не рисковать. У него была репутация человека, который находит ошибки в экспериментах других физиков, и ему не хотелось, чтобы кто-то нашел ошибки у него. Его убеждали опубликовать результаты, но он отказывался, пока они не смогут подтвердить свои данные.

Тем временем на Западном побережье США у физика Стэнфордского университета Роя Швиттерса возникла одна проблема. В середине 1973 года в Стэнфордском центре ускорителей вступил в строй Стэнфордский асимметричный накопитель позитронного и электронного пучков (сокращенно SPEAR), в котором начали сталкивать разогнанные электроны и позитроны. Швиттерс нашел ошибку в одной из компьютерных программ, которые использовались для анализа данных, полученных в ходе экспериментов на SPEAR. Исправив ошибку, он снова проанализировал данные экспериментов за июнь 1974 года и увидел некоторую упорядоченность – маленькие бугорки на энергиях 3,1 и 4,2 ГэВ. Руководитель проекта американский физик Бертон Рихтер в конце концов распорядился реконфигурировать SPEAR для энергии столкновений около 3,1 ГэВ, так чтобы экспериментаторы вернулись и посмотрели еще раз.

К ноябрю 1974 года стало ясно, что и группа Тинга в Брукхейвене, и группа Рихтера в Стэнфордском центре открыли одну и ту же новую частицу, мезон, образованный очарованным кварком и очарованным антикварком. Группа Тинга решила назвать ее J-частицей, а группа Рихтера назвала ее ψ (пси). Это совместное открытие позднее окрестили ноябрьской революцией.

После этого случилась небольшая неразбериха из-за первенства. Обе группы не хотели уступать право первенства и признавать название мезона, которое ему дала другая группа, и его до сих пор называют J/ψ-мезоном. Тинг и Рихтер разделили Нобелевскую премию по физике за 1976 год.

Назад Дальше