О феномене статического электричества знали еще философы Древней Греции. Они обнаружили, что можно генерировать электрический заряд и даже искры, если потереть о мех некоторые вещества, например янтарь. У научного исследования электричества долгая и блестящая история, в которой участвовали многие герои. Но только английский физик Майкл Фарадей, работавший в лондонском Королевском институте, соединил множество наблюдений в одно ясное представление о природе электрического заряда. Результаты многочисленных экспериментов неизбежно приводили к выводу, что электрический заряд нельзя ни создать, ни уничтожить ни в одном физическом или химическом преобразовании. Заряд всегда сохраняется.
Уже было открыто множество законов и правил, управляющих электрическим зарядом и его еще непонятной связью с магнетизмом, – это законы Кулона, Гаусса, Ампера, Био – Савара – Лапласа, Фарадея и так далее. В начале 1860-х шотландский физик Джеймс Клерк Максвелл сделал для теории электромагнетизма то, что Ньютон сделал для теории движения планет. Он осуществил смелый теоретический синтез, подобно тому как Фарадей синтезировал данные экспериментов. Красивые уравнения Максвелла в тесном объятии связали электрическое и магнитное поля, создаваемые движущимся электрическим зарядом .
Уравнения также продемонстрировали, что все электромагнитное излучение, включая свет, можно описать в виде движения волны со скоростью, которая рассчитывается из известных физических постоянных. Это электрическая постоянная, физическая величина, определяющая способность вакуума передавать или "разрешать" электрическое поле, генерируемое электрическим зарядом, и магнитная постоянная, определяющая проницаемость вакуума для магнитного поля, окружающего движущийся электрический заряд. Когда Максвелл соединил эти постоянные в соответствии со своей новой теорией электромагнитного поля, он получил, что скорость "электромагнитных волн" равна скорости света.
Однако уравнения Максвелла имеют дело с полями , которые генерирует электрический заряд, а не с самим зарядом. Они тесно связаны, но уравнения в принципе не позволяют понять причины сохранения заряда. В свете теоремы Нетер поиск законов, управляющих электрическим зарядом, стал поиском глубинного непрерывного преобразования симметрии, относительно которой законы инвариантны.
Поиск продолжил немецкий математик Герман Вейль.
Вейль родился в 1885 году в Эльмсхорне, городке недалеко от Гамбурга, и получил докторскую степень под руководством Гильберта в Геттингене в 1908 году. Затем он получил должность профессора в Швейцарской высшей технической школе Цюриха, где познакомился с Альбертом Эйнштейном и где его увлекли вопросы математической физики.
Работая над общей теорией относительности в 1915 году, Эйнштейн отказался от всякого понятия абсолютного пространства и времени. Он утверждал, что физика, напротив, должна быть основана исключительно на расстояниях между точками и искривлении пространства-времени в каждой точке. Этот эйнштейновский принцип общей ковариантности и вытекающая из него теория гравитации инварианты произвольным изменениям системы координат. Иными словами, хотя существуют физические законы природы, во Вселенной не существует "природной" системы координат. Мы сами изобретаем системы координат, которые помогают описывать физические явления, но законы не должны зависеть (и не зависят) от этого произвольного выбора.
Есть два способа изменить систему координат. Можно сделать глобальное изменение, которое применяется одинаково ко всем точкам пространства и времени. Пример такого глобального преобразования симметрии – это равномерный сдвиг параллелей и меридианов, которые используют картографы для составления карт земной поверхности. Если изменение одинаково везде и применяется последовательно по всему земному шару, это никак не повлияет на нашу способность дойти из одной точки в другую.
Но изменения бывают и локальными , отличающимися для разных координат в разных точках пространства-времени. Например, в одной части пространства мы могли бы повернуть оси нашей системы координат под небольшим углом и в то же время изменить масштаб. При условии, что это изменение транслировано вплоть до меры различий в положении и времени, оно не влияет на предсказания общей теории относительности. Следовательно, общая ковариантность – это пример инвариантности локального преобразования симметрии.
Вейль долго и упорно размышлял над теоремой Нетер и работал над теорией групп непрерывного преобразования симметрии, называемых группами Ли в честь норвежского математика XIX века Софуса Ли. В 1918 году он пришел к выводу, что законы сохранения связаны с локальными преобразованиями симметрии, которые он назвал общим термином калибровочная симметрия – довольно непонятным, к сожалению. Руководствуясь трудами Эйнштейна, он рассматривал симметрию в отношении расстояния между точками в пространстве-времени, как в примере с поездом, движущимся по рельсам, и неподвижным измерительным прибором.
Вейль нашел, что, обобщив принцип общей ковариантности до калибровочной инвариантности, он мог использовать теорию Эйнштейна как основание для того, чтобы вывести уравнения Максвелла. Казалось, он открыл теорию, которая могла объединить два взаимодействия, известные в то время науке, – электромагнитное и гравитационное. Тогда инвариантность, тождественная законам сохранения, была бы связана с произвольными изменениями "калибровки" полей. Таким образом Вейль надеялся продемонстрировать сохранение энергии, импульса и момента импульса и электрического заряда.
Сначала Вейль относил калибровочную инвариантность за счет самого пространства. Но, как вскоре показал Эйнштейн, это значило, что измеренные длины стержней и показания часов будут зависеть от того, что недавно с ними происходило. Часы, передвинутые на другое место в комнате, уже не смогут верно показывать время. Эйнштейн написал Вейлю и посетовал: "Не считая расхождения с реальностью, [ваша теория] в любом случае есть грандиозное достижение ума" .
Вейля беспокоила эта критика, но он считал, что в таких делах можно положиться на интуицию Эйнштейна. Он отказался от своей теории.
Австрийский физик Эрвин Шредингер поступил на кафедру Цюрихского университета через три года, в 1921 году. Всего через несколько месяцев врачи заподозрили у него легочный туберкулез и прописали ему полный покой. Шредингер с женой Анни поселились на вилле на альпийском курорте Ароза, недалеко от модного лыжного курорта Давос, где пробыли девять месяцев.
Пока Анни выхаживала Шредингера, он размышлял о значении калибровочной симметрии Вейля и, в частности, о периодическом калибровочном множителе, который встречался в теории Вейля. В 1913 году датский физик Нильс Бор опубликовал свою модель строения атома, в которой электроны обращаются вокруг ядра без изменения энергии, которую характеризует их квантовое число. Это целое число определяет энергию орбиты, увеличиваясь в линейной последовательности (1, 2, 3, …) от внутренней к внешней орбите. В то время их происхождение полностью покрывала тайна.
Шредингера поразило то, что может существовать связь между периодичностью, которую подразумевал калибровочный множитель Вейля, и периодичностью, которую подразумевали квантованные атомные орбиты Бора. Он проверил несколько возможных форм для калибровочного множителя, в том числе ту, которая содержала комплексное число, полученное умножением обычного числа на мнимое число i – квадратный корень из –1 . В статье 1922 года он предположил, что эта связь имеет глубокое физическое значение. Но это были лишь смутные интуитивные догадки. Реальное значение связи будет ускользать от него до тех пор, пока он не изучит докторскую диссертацию французского физика Луи де Бройля 1924 года.
Де Бройль предположил, что, если электромагнитные волны с виду ведут себя, как частицы , может быть, частицы, например электроны, могут вести себя как волны. Что бы это ни было, эти "материальные волны" отнюдь нельзя считать похожими на знакомые нам явления, как, например, звуковые волны или волны на поверхности воды. Де Бройль пришел к выводу, что "материальная волна" "представляет собой распространение в пространстве фазы , то есть это "фазовая волна" , .
Шредингер задумался: как будет выглядеть электрон, если математически описать его как волну? На Рождество 1925 года он снова уехал в Арозу. Его отношения с женой совсем разладились, и потому он решил взять с собой старую подружку из Вены. Еще он взял с собой записи по поводу диссертации де Бройля. К возвращению 8 января 1926 года Шредингер уже открыл волновую механику, теорию, которая описывает электрон как волну и орбиты атомной модели Бора с точки зрения волновой функции электрона.
Теперь уже было можно провести связь. Возьмем пример группы Ли – группу симметрии U(1), называемую унитарной группой преобразований с единственной комплексной переменной. Она включает преобразования симметрии, которые в основном полностью аналогичны преобразованиям типа непрерывного вращения в круге. Но круг изображается на двухмерной плоскости, образованной "настоящими" измерениями, тогда как преобразования группы U(1) подразумевают вращение в двухмерной комплексной плоскости. Она образована двумя "настоящими" измерениями, одно из которых умножено на i.
Есть еще один способ представить эту группу симметрии – с точки зрения непрерывных преобразований фазового угла синусоидальной волны (см. рис. 7). Разные фазовые углы соответствуют разным амплитудам волны в цикле ее пиков и спадов. Калибровочная симметрия Вейля сохраняется, если фазовые изменения волновой функции электрона соответствуют изменениям сопутствующего электромагнитного поля. Сохранение электрического заряда можно проследить до локальной фазовой симметрии волновой функции электрона.
Связь между волновой механикой и калибровочной теорией Вейля стала явной в 1927 году благодаря немецкому теоретику Фрицу Лондону и советскому физику Владимиру Фоку. В 1929 году Вейль переформулировал и расширил свою теорию в контексте квантовой механики.
Немецкий и австрийский физики Вернер Гейзенберг и Вольфганг Паули разработали вариант именно квантовой теории поля в 1929 году. Но в нем оставалась одна большая проблема. Физики обнаружили, что не могут точно решить уравнения полей. Иными словами, они не могли записать решение уравнений полей в виде единственного самостоятельного математического выражения, применимого в любых обстоятельствах.