Когда-то, в 1974 году, Калаби и Ниренберг совместно с Дж. Дж. Коном из Принстона уже начинали работу над комплексной разновидностью задачи Дирихле в евклидовом пространстве. Они добились определенных успехов в исследовании оценок третьего порядка, так что мне оставалось применить их результаты к случаю искривленного пространства. В том же году у меня возникли некоторые идеи по поводу нахождения оценок второго порядка для гипотезы Калаби, при этом я опирался на собственную работу 1972 года, посвященную так называемой лемме Шварца. Эта лемма, или мини-теорема, появилась еще в XIX столетии и не имела ничего общего с геометрией, до тех пор пока в первой половине XX столетия она не была переосмыслена профессором Гарвардского университета Ларсом Альфорсом. Теорема Альфорса относилась только к римановым поверхностям, имеющим по определению одно комплексное измерение, но мне удалось обобщить ее для случая любой комплексной размерности.
Приготовления к поиску оценки второго порядка для гипотезы Калаби я закончил летом 1975 года. Год спустя я узнал, что французский математик Тьерри Обен нашел подход к данной оценке независимо от меня. Сделав оценку второго порядка, я также показал ее зависимость от оценки нулевого порядка и продемонстрировал возможность перехода от нулевого порядка ко второму. После окончания работы над этой оценкой оставался только один нерешенный вопрос, от которого теперь зависела судьба всего доказательства, - нахождение оценки нулевого порядка. Из оценки нулевого порядка я уже мог получить оценку как второго, так и первого порядка - в качестве бесплатного приложения к уже найденным, поскольку из оценок нулевого и второго порядков оценка первого порядка следует автоматически. Это было чистой воды везение. Фигурально выражаясь, так легли карты и, в целом, легли они весьма неплохо. Оценка третьего порядка также оказалась зависящей от оценок нулевого и второго порядков - то есть все свелось к нахождению оценки нулевого порядка. Знание этой оценки должно было расставить все остальное на свои места, но без нее все прочее было бы бессмысленно.
Свою работу я заканчивал в Курантовском институте Нью-Йорка, находясь на должности приглашенного сотрудника - эту должность мне помог занять Ниренберг. Вскоре моя невеста Ю-Юн, работавшая до этого в Принстоне, получила предложение работы в Лос-Анджелесе. Не желая разлучаться с ней, я занял другую приглашенную должность в Калифорнийском университете. В 1976 году мы вместе проехали всю страну с востока на запад, собираясь заключить брак сразу же по прибытии в Калифорнию. И действительно, прибыв в Калифорнию, мы тут же обвенчались. Эта поездка запомнилась нам надолго: мы были влюблены друг в друга, природа вокруг поражала своей красотой и большую часть пути мы строили планы на будущую совместную жизнь. Но все же я должен признаться, что даже тогда было нечто, что не давало мне покоя: в моей голове по-прежнему крепко сидела гипотеза Калаби и, в частности, оценка нулевого порядка, которая никак мне не поддавалась. Целый год я бился над ее поисками. В сентябре 1976 года, сразу после нашей свадьбы, мои усилия, наконец, увенчались успехом, и остальные части доказательства тут же встали на свои места. Как оказалось, семейная жизнь была именно тем, чего мне недоставало.
Задача нахождения оценки нулевого порядка аналогична нахождению оценок других порядков: на некое уравнение или функцию необходимо наложить ограничения - как сверху, так и снизу. Иными словами, функцию нужно поместить в воображаемый ящик и показать, что функция "влезет" в него, даже если размеры ящика не будут бесконечно велики. Если это возможно сделать, то функцию можно считать ограниченной сверху. С другой стороны, нужно показать, что функция не настолько мала, чтобы каким-либо образом "просочиться" за пределы ящика, таким образом ограничив ее снизу.
Один из возможных подходов к задаче такого типа состоит в том, чтобы взять абсолютное значение - модуль функции, которое говорит о ее величине в целом вне зависимости от того, положительное или отрицательное значение она принимает. Для того чтобы проверить функцию u, нужно показать, что ее абсолютное значение в любой точке пространства будет меньше постоянной величины c (или равно ей). Поскольку значение c точно определено, необходимо просто показать, что функция u не может произвольно принимать очень большие или очень малые значения. Иными словами, утверждение, которое мы хотим доказать, является простым неравенством, утверждающим, что модуль функции u должен быть меньше или равен c: |u|≤c. И хотя оно выглядит не особо сложным, в том случае, когда u является комплексным объектом, доказательство требует достаточно много усилий.
Я не буду подробно останавливаться на деталях доказательства, отмечу только, что оно основывалось на оценке второго порядка для уравнения Монжа-Ампера, которую я уже сделал ранее. Мне также пригодилось известное неравенство Пуанкаре, а также неравенство, полученное российским математиком Сергеем Соболевым. Оба они содержали возведенные в определенную степень интегралы и производные различных порядков от абсолютного значения u. Последнее, а именно нахождение различных степеней интегралов и производных от u, имело решающее значение для проведения оценок, поскольку, только показав, что интегралы и производные от u в степени p даже при очень больших p все равно остаются ограниченными, можно считать работу выполненной. После этого функцию можно было считать стабильной. В конце концов, с помощью этих неравенств и различных теорем, а также ряда лемм, сформулированных мной по ходу доказательства, я смог это сделать. Когда, наконец, оценка нулевого порядка была получена, работу можно было считать завершенной.
Впрочем, говорят, что нельзя судить о пудинге до тех пор, пока его не попробуешь, - даже если что-то имеет привлекательный вид, окончательный вывод можно сделать только после тщательной проверки. Я не мог слепо полагаться на удачу. Однажды я уже поставил себя в неловкое положение, публично заявив на стэнфордской конференции 1973 года, будто знаю, как опровергнуть гипотезу Калаби. Тогда мое предполагаемое опровержение провалилось, и если бы теперь точно так же провалилось и мое подтверждение гипотезы Калаби, моя репутация как математика оказалась бы под большим вопросом. Я точно знал, что на данном этапе своей карьеры - мне тогда еще не исполнилось тридцати - я не могу позволить себе ошибиться вновь, по крайней мере, в столь важном деле.
Поэтому я проверял и перепроверял свое доказательство, рассмотрев его четыре раза с четырех совершенно разных позиций. Я проверял его столько раз, что поклялся, что если я окажусь неправ, то брошу математику. Но все мои попытки найти огрехи в доказательстве оказались тщетными. Насколько я мог судить, в нем все было идеально. Поскольку в те времена еще не существовало Интернета, где я мог бы просто опубликовать черновик своей статьи и попросить прокомментировать его, я избрал старомодный путь - выслал копию моего доказательства Калаби и отправился в Филадельфию для дальнейшей дискуссии с ним самим и другими геометрами с математического факультета Пенсильванского университета, в том числе и с Джерри Кадзаном.
Калаби счел мое доказательство безупречным, но мы договорились встретиться с Ниренбергом и проработать его вместе шаг за шагом. Так как найти время, когда мы все трое были бы свободны, было весьма непросто, наша встреча пришлась на Рождество 1976 года - единственный день, в который никто из нас не имел неотложных дел. На этой встрече нам так и не удалось найти в доказательстве ни одной ошибки - впрочем, чтобы окончательно удостовериться в правильности доказательства, требовалось намного больше времени. "На первый взгляд оно выглядит весьма правдоподобно, - вспоминал Калаби. - Но чрезвычайная сложность этого доказательства требует еще порядка месяца для более детальной проверки".
По окончании срока, отпущенного на рецензирование, Калаби и Ниренберг выразили свое полное согласие с моим доказательством. С этого момента гипотезу Калаби можно было объявить доказанной, и за прошедшие с того времени тридцать с лишним лет никто так и не смог поколебать это утверждение. На сегодняшний день доказательство гипотезы Калаби выдержало столько проверок, проведенных столь значительным числом ученых, что едва ли можно ожидать обнаружения в нем существенных ошибок в дальнейшем.
Итак, что же мне удалось сделать? Доказательством гипотезы Калаби я еще раз укрепил свое убеждение о том, что важнейшие математические проблемы могут быть разрешены путем объединения геометрии с дифференциальными уравнениями в частных производных. Более конкретно, я доказал существование риччи-плоской метрики для компактных кэлеровых пространств, первый класс Черна для которых обращается в нуль, хотя я и не смог написать точную формулу, определяющую метрику саму по себе. Все, что я мог сказать, - это то, что подобная метрика существовала, но точный ее вид так и остался мне неизвестным.
Хотя это может прозвучать несколько неожиданно, метрика, существование которой я доказал, обладала почти сверхъестественными свойствами. В качестве постскриптума к своему доказательству я показал возможность существования множества фантастических многомерных пространств, известных сейчас как пространства Калаби-Яу, которые удовлетворяли уравнениям Эйнштейна в случае отсутствия в них материи. Таким образом, я обнаружил не просто решение, а самый многочисленный из известных класс решений уравнений Эйнштейна.
Кроме того, мне удалось показать, что непрерывно изменяя топологию, можно получить бесконечный класс решений основного уравнения, входящего в гипотезу Калаби, в настоящее время известного как уравнение Калаби-Яу и являющегося частным случаем уравнения Эйнштейна. Решения этого уравнения представляли собой топологические пространства, и сила доказательства состояла в его общности. Иными словами, я доказал существование не только одного примера подобных пространств или частного случая, а целого класса примеров. Более того, я показал, что для определенной топологии - например, для комплексных подмногообразий, находящихся внутри более крупных многообразий, - существует только одно возможное решение.
До появления моего доказательства единственными известными компактными пространствами, удовлетворяющими требованиям уравнений Эйнштейна, были так называемые локально однородные многообразия, в которых любые находящиеся рядом две точки казались неразличимыми. Но те пространства, которые мне удалось обнаружить, были как неоднородны, так и асимметричны, точнее, в них отсутствовала всеохватывающая глобальная симметрия, что, однако, не мешало им иметь менее заметную внутреннюю симметрию, о которой уже шла речь в предыдущей главе. Лично для меня это казалось преодолением огромного препятствия, поскольку выход за пределы глобальной симметрии открывал целый ряд новых возможностей, делая мир вокруг и интереснее и запутаннее.
В первое время я просто наслаждался красотой этих замысловатых пространств и кривизны самой по себе, не задумываясь об их возможных применениях. Но уже вскоре оказалось, что эти пространства имеют множество применений, как в рамках математики, так и за ее пределами. Однажды мы уже сочли гипотезу Калаби "слишком хорошей, чтобы быть истинной". На самом деле она оказалась даже лучше, чем мы думали.
Шестая глава
ДНК теории струн
При поиске алмазов, если вам повезет, вы также можете найти и другие драгоценные камни. Когда я заявил о своем доказательстве гипотезы Калаби в 1977 году в своей двухстраничной статье, за которой последовало само доказательство на семидесяти трех страницах в 1978-м, я также объявил о доказательстве еще пяти теорем, относящихся к данной гипотезе. Такая плодотворность во многом стала следствием тех необычных обстоятельств, в которых завязывались мои отношения с гипотезой Калаби, - начав с попыток доказать ее ошибочность, я затем резко сдал назад и стал доказывать ее истинность. К счастью, оказалось, что мои усилия не были потрачены даром - все мои ошибочные шаги, все те безвыходные положения, в которые я попадал, впоследствии были мной использованы. Придуманные мной контрпримеры - следствия, логически вытекающие из гипотезы Калаби, которые, как я полагал, должны были оказаться ложными, - также оказались истинными. Эти неудавшиеся контрпримеры на самом деле были настоящими примерами и вскоре были представлены мной в виде нескольких небезынтересных математических теорем.
Важнейшая из этих теорем вела к доказательству гипотезы Севери (комплексного варианта гипотезы Пуанкаре), задачи, которая оставалась нерешенной на протяжении двух десятилетий. Но прежде чем дойти до этого, я доказал одно важное неравенство, напрямую связанное с вопросом классификации поверхностей на основе их топологии, которым я заинтересовался, отчасти благодаря моему разговору с гарвардским математиком Дэвидом Мамфордом, проезжавшим в то время через Калифорнию. Задача, о которой идет речь, впервые была выдвинута Антониусом ван де Веном из Лейденского университета и относилась к вопросу о неравенстве между классами Черна для кэлеровых многообразий. Ван де Вен доказал, что для любого многообразия второй класс Черна, умноженный на восемь, должен быть больше или равен квадрату первого класса Черна того же многообразия. Притом многие полагали, что этому неравенству можно придать более сильную форму, заменив восьмерку на тройку. Действительно, тройку можно было бы считать оптимальным значением. Вопрос, поставленный Мамфордом, состоял в возможности доказательства этого более сильного утверждения. Смысл выражения "более сильное утверждение" заключается в том, что, согласно предположению Мамфорда, некая величина, а именно второй класс Черна, будет больше, чем некая другая, не только при умножении на восемь, но и при умножении на меньшее число - три.
Мамфорд поднял этот вопрос во время своей лекции в Калифорнийском университете в Ирвине в сентябре 1976 года; я также присутствовал на ней, как раз незадолго до этого закончив работу над доказательством гипотезы Калаби. Во время доклада Мамфорда мне стало понятно, что я уже сталкивался с этой задачей раньше. Поэтому в процессе дискуссии, возникшей по окончании лекции, я сказал Мамфорду, что смогу доказать этот более сложный случай. Придя домой, я проверил свои расчеты и обнаружил, что, как я и подозревал, этот тип неравенства я пытался использовать в 1973 году для опровержения гипотезы Калаби; теперь же я мог использовать теорему Калаби-Яу для доказательства этого неравенства. Более того, доказав упомянутое выше утверждение, я теперь мог воспользоваться его частным случаем, а именно случаем равенства (второй класс Черна, умноженный на три, равен квадрату первого класса Черна) для доказательства гипотезы Севери.
Эти две теоремы, открывшие путь к доказательству гипотезы Севери и более общего неравенства, иногда называемого неравенством Богомолова-Мияока-Яу (я привожу полное название, чтобы выразить признательность двум другим математикам, внесшим вклад в решение этой задачи), стали первыми побочными результатами доказательства гипотезы Калаби, за которыми последовали многие другие. Гипотеза Калаби, по сути, оказалась намного обширнее, чем я считал до этого. Она применима не только к случаю нулевой кривизны Риччи, но и к случаям постоянной отрицательной и постоянной положительной кривизны. Никто до сих пор не исследовал случай положительной кривизны в наиболее общем виде, для которого гипотеза Калаби заведомо ложна. Я сформулировал новую гипотезу, определяющую условия, при которых метрика с положительной кривизной Риччи может существовать. На протяжении последних двух десятилетий многие математики, в том числе и Дональдсон, внесли значительный вклад в доказательство этой гипотезы, но окончательного доказательства до сих пор нет. При этом мне удалось исследовать случай отрицательной кривизны как часть общего доказательства гипотезы Калаби, независимо от меня этот же результат был получен французским математиком Тьерри Обеном. Решение, найденное для случая отрицательной кривизны, позволило показать существование широкого класса объектов, называемых многообразиями Кэлера-Эйнштейна, создав тем самым новые области геометрии, оказавшиеся необычайно плодотворными.
Справедливости ради стоит сказать, что я плодотворно провел время, посвященное поиску непосредственных применений гипотезы Калаби, - я доказал порядка полудюжины теорем. Оказалось, что одно лишь знание того, что определенная метрика существует, уже приводит к огромному числу следствий. Это знание можно было использовать для дедуктивного рассуждения и получить топологию многообразия, даже не зная точного значения метрики. И напротив, зная свойства многообразия, можно предсказать некоторые его уникальные особенности - подобно тому как, не зная всех деталей, можно сделать определенные выводы и о колоде карт, например об общем числе карт и маркировке каждой из них, или даже о строении Галактики. Как мне кажется, подобные возможности, предоставляемые математикой, представляют собой нечто сверхъестественное и говорят даже больше о ее силе, чем в тех ситуациях, когда каждая из деталей нам известна.
Мне было весьма приятно пожинать плоды своих трудов и наблюдать, как другие вслед за мной прокладывают пути в те места, которые самому мне оказались недоступны. И все же, несмотря на все успехи, кое-что по-прежнему не давало мне покоя. В глубине души я был уверен, что эта работа должна иметь не только математические, но и физические приложения, хотя и не мог точно сказать, какие. В некоторой степени моя уверенность объяснялась тем, что дифференциальные уравнения, задействованные в гипотезе Калаби - в случае нулевой кривизны Риччи, - представляли собой уравнения Эйнштейна для пустого пространства, соответствующие Вселенной без дополнительной вакуумной энергии, космологическая постоянная для которой была бы равна нулю. В настоящее время космологическую постоянную принято считать положительной и связанной с темной энергией, заставляющей Вселенную расширяться. Кроме того, многообразия Калаби-Яу представляли собой решения дифференциальных уравнений Эйнштейна, также как, например, единичная окружность представляет собой решение уравнения x+y=0.
Конечно, для описания пространств Калаби-Яу необходимо намного больше уравнений, чем для описания окружности, и сложность этих уравнений гораздо выше, но основная идея остается той же. Многообразия Калаби-Яу не только удовлетворяют уравнениям Эйнштейна, они удовлетворяют им чрезвычайно элегантным образом, что я, в частности, нахожу поразительным. Все это давало мне основание надеяться на их применимость в физике. Я только не знал, где именно.
Мне не оставалось ничего иного, кроме как пытаться объяснить моим друзьям и постдокам физикам те причины, по которым я считаю гипотезу Калаби и возникшую из нее так называемую теорему Яу столь важными для квантовой гравитации. Основная проблема состояла в том, что в то время мое понимание теории квантовой гравитации было явно недостаточным, чтобы я мог всецело положиться на собственную интуицию. Я время от времени возвращался к этой идее, но в основном сидел сложа руки и ждал, что из этого выйдет.