Теория струн и скрытые измерения Вселенной - Шинтан Яу 27 стр.


Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) - он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы - в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии, уже можно было подвергнуть окончательной проверке - математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.

Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.

Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года - со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее - и в этом мы были не одиноки - крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.

Некоторые эксперты, в том числе Газман, назвали нашу статью "первым полным и строгим доказательством" гипотезы, аргументируя это тем, что доказательство Гивенталя "было весьма тяжелым для понимания, а в ряде мест - неполным". Дэвид Кокс, математик из колледжа Амхерст, являвшийся соавтором (вместе с Кацом) книги "Зеркальная симметрия и алгебраическая геометрия", также заявил о том, что мы представили "первое полное доказательство гипотезы". С другой стороны, многие придерживались иного мнения, утверждая, что доказательство Гивенталя, опубликованное за год до нашего, было абсолютно полным и не содержало в себе каких-либо серьезных пробелов. Оставляя другим возможность продолжать дискуссию по этому поводу, сам я полагаю наилучшим объявить, что эти две статьи, сведенные вместе, представляют собой доказательство гипотезы о зеркальной симметрии, и оставить этот вопрос. Дальнейшее продолжение спора не имеет смысла, особенно в свете того, что в математике все еще полно нерешенных проблем, являющихся куда более достойным объектом для приложения усилий.

Итак, отбросив противоречия, зададимся вопросом: что же доказывают эти две статьи? Прежде всего, доказательство гипотезы о зеркальной симметрии подтвердило правильность формулы Канделаса для числа кривых определенного порядка. Но на самом деле наше доказательство было шире. Формула Канделаса была применима для подсчета числа кривых только на трехмерной поверхности пятого порядка, тогда как наши доказательства можно было использовать для гораздо более широкого класса многообразий Калаби-Яу, в том числе и для тех многообразий, к которым проявляют интерес физики, а также для других объектов, таких как векторные расслоения, о которых пойдет речь в девятой главе. Более того, наше обобщение позволяло использовать гипотезу о зеркальной симметрии не только для подсчета кривых, но и для получения других геометрических характеристик.

Как мне кажется, доказательство этой гипотезы позволило провести последовательную проверку некоторых идей из области теории струн с точки зрения строгой математики, что обеспечило данной теории крепкую математическую основу. Впрочем, теория струн не осталась в долгу перед математикой, поскольку зеркальная симметрия привела к созданию нового раздела алгебраической геометрии - нумеративой геометрии, - внеся существенный вклад в решение давних проблем в этой области. В самом деле, многие из моих коллег, занимающихся алгебраической геометрией, рассказывали мне, что единственной работой за последние пятнадцать лет, которая вызвала у них интерес, стала работа, вдохновленная идеями о зеркальной симметрии. Огромный вклад в математику со стороны теории струн вынудил меня признать, что физическая интуиция определенно должна чего-то стоить. Это означало, что даже если природа и не работает строго по законам теории струн, эта теория, тем не менее, должна содержать в себе немалую долю истины, поскольку ее применение открывало путь к решению многих классических проблем, которые математики были не в состоянии решить самостоятельно. Даже сейчас, много лет спустя, невозможно представить себе независимый путь вывода формулы Канделаса, в котором не использовались бы идеи теории струн.

По иронии, единственным вопросом, который доказательство гипотезы о зеркальной симметрии так и оставило открытым, стал вопрос об определении самого понятия зеркальной симметрии. Во многих отношениях это явление, открытое физиками и впоследствии нашедшее заметное применение в математике, так и осталось загадкой, хотя в настоящее время уже определены два основных подхода, которые могут привести к ответу, - один из них известен как гомологическая зеркальная симметрия, другой же носит название гипотезы SYZ. Если гипотеза SYZ представляет собой попытку интерпретации зеркальной симметрии с геометрической точки зрения, то гомологическая зеркальная симметрия основана на алгебраическом подходе.

Для начала рассмотрим тот из двух подходов, в который мне удалось внести более заметный вклад, а именно гипотезу SYZ, название которой представляет собой аббревиатуру, образованную из первых букв фамилий авторов ключевой статьи по этой теме, вышедшей в 1996 году: Эндрю Строминджер - это S, Эрик Заслоу из Северо-Западного университета - это Z, а я - это Y. Подобные взаимодействия между учеными редко имеют формальную отправную точку - это, например, началось с моих случайных разговоров со Строминджером на конференции 1995 года в Триесте. Строминджер рассказывал о статье, написанной им незадолго до этого совместно с Кэтрин и Мелани Беккер, сестрами, в настоящее время занимающимися физикой в Техасском университете А&М. Так как D-браны в то время уже произвели немало шума в теории струн, целью статьи стало исследование того, как эти браны вписываются в геометрию Калаби-Яу. Идея авторов заключалась в том, что браны могут оборачиваться вокруг подмногообразий, находящихся внутри пространств Калаби-Яу. Сестры Беккер и Строминджер исследовали класс подмногообразий, сохраняющих суперсимметрию, что привело к открытию ряда весьма интересных свойств. Меня и Строминджера заинтересовал вопрос о той роли, которую эти подмногообразия могут играть в зеркальной симметрии.

Я вернулся в Гарвард, вдохновленный открывшейся возможностью, и сразу же обсудил ее с Заслоу, физиком, перешедшим в математику, который в то время был моим постдоком. Вскоре Строминджер приехал из Санта-Барбары в Гарвардский университет, руководство которого развернуло активную кампанию по переманиванию его в свои ряды. Впрочем, для того чтобы Строминджер принял окончательное решение о переходе, понадобился еще год. Итак, мы втроем смогли встретиться, соединив тем самым буквы S, Y и Z в одном и том же месте, в одно и то же время - и, впоследствии, на одной и той же странице статьи, поданной нами в печать в июне 1996 года.

Окажись гипотеза SYZ верной, это стало бы аргументом в пользу существования подструктуры многообразий Калаби-Яу, что привело бы к более глубокому пониманию их геометрии. Согласно этой гипотезе, многообразие Калаби-Яу можно представить в виде двух трехмерных многообразий, переплетенных друг с другом. Одним из этих пространств является трехмерный тор. Отделив этот тор от другой части, "обратив" его (заменив радиус r обратной величиной 1/r) и вновь соединив части в одно целое, вы получите многообразие, являющееся зеркальным по отношению к исходному. Как утверждает Строминджер, SYZ "позволяет получить простую физическую и геометрическую картину того, чему соответствует зеркальная симметрия".

Согласно гипотезе SYZ, ключ к пониманию зеркальной симметрии лежит в подмногообразиях пространств Калаби-Яу и в способе их организации. Вы, наверное, помните приведенное ранее сравнение поверхности, содержащей в себе множество подповерхностей или подмногообразий, с куском швейцарского сыра. Подмногообразия в данном случае являются не участками поверхности, а отдельными объектами с размерностью меньше размерности многообразия, представляющими собой отдельные дырки в "сыре", каждую из которых можно по отдельности покрыть чем-либо или пропустить что-либо сквозь нее. Точно так же, согласно гипотезе SYZ, и подмногообразия в пространствах Калаби-Яу обернуты D-бранами. Не хотелось бы вносить в дальнейший рассказ путаницу, но не могу не упомянуть, что существует и другое мнение, согласно которому D-браны сами являются подмногообразиями, а не просто их "упаковками". Физики предпочитают рассуждать в терминах бран, тогда как математикам удобнее пользоваться собственной терминологией. Подпространства такого типа, удовлетворяющие условию суперсимметрии, носят название лагранжевых подмногообразий и, как следует из их названия, обладают особыми свойствами: их размерность ровно вдвое меньше размерности пространств, в которых они находятся, а их мера (то есть длина, площадь, объем и т. д. - в зависимости от размерности) является минимальной.

Рассмотрим в качестве примера простейшее из возможных пространств Калаби-Яу - двухмерный тор, или бублик. В роли лагранжева подмногообразия в данном случае будет выступать одномерное пространство - объект, представляющий собой петлю, пропущенную через дырку бублика. Поскольку длина петли должна быть минимальна, петля должна точно совпадать с наименьшей из окружностей, проходящих через дырку, - варианты с петлями произвольного размера, а также с волнистыми и искривленными петлями не подходят. "Все многообразие Калаби-Яу в этом случае представляет собой объединение окружностей, - объясняет Марк Гросс, человек, сделавший больше всех остальных для развития гипотезы SYZ с того момента, как она была сформулирована. - Пусть существует некое вспомогательное пространство, назовем его В, несущее в себе информацию обо всех этих окружностях и само по себе являющееся окружностью". Говорят, что В параметризирует этот набор окружностей, то есть каждой точке на В соответствует определенная окружность, а каждой окружности, проходящей через дырку бублика, - определенная точка пространства В. Можно представить это и по-другому, сказав, что пространство В, называемое пространством модулей, является в определенном смысле каталогом подпространств, из которых состоит многообразие. При этом В - не просто список: помимо "перечня подпространств" оно содержит и информацию об их расположении. По словам Гросса, пространство модулей В может стать ключом ко всей гипотезе SYZ. Поэтому стоит потратить еще немного времени, чтобы разобраться поподробнее со вспомогательными пространствами.

Если добавить еще одно комплексное измерение, перейдя таким образом от двух вещественных измерений к четырем, многообразие Калаби-Яу превратится в K3-поверхность. Подмногообразия, в свою очередь, в этом случае являются уже не окружностями, а двухмерными торами, соединенными в единое целое в рамках многообразия. "Изобразить четырехмерное пространство мне не под силу, - говорит Гросс. - Но я могу описать пространство В, указывающее на то, в каком порядке расположены составляющие его подмногообразия (бублики)". В этом случае пространство В представляет собой просто двухмерную сферу. Каждая точка этой сферы соответствует отдельному бублику, за исключением двадцати четырех "плохих" точек, соответствующих "сжатым бубликам", имеющим сингулярности, смысл которых будет вкратце объяснен далее.

Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби-Яу. Пространство В теперь превратится в трехмерную сферу (трехмерную поверхность мы изобразить не в состоянии), а ее подпространства - в трехмерные бублики. В этом случае набор "плохих" точек, соответствующих сингулярным бубликам, приходится на линейные сегменты, связанные друг с другом подобием сети. "Все точки линейного сегмента являются "плохими" [или сингулярными], однако те из них, которые лежат в вершинах сети, в местах пересечения сразу трех линейных сегментов, являются совсем плохими", - говорит Гросс. Эти точки, в свою очередь, соответствуют наиболее искаженным бубликам.

Шинтан Яу, Стив Надис - Теория струн и скрытые измерения Вселенной

Рис. 7.9. Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби-Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби-Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби-Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В, также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие - или бублик - состоит из набора подобных окружностей

Шинтан Яу, Стив Надис - Теория струн и скрытые измерения Вселенной

Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3-поверхности, являющиеся классом четырехмерных многообразий Калаби-Яу. Согласно гипотезе SYZ, мы можем создать K3-поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик

Именно здесь и проявляется зеркальная симметрия. Работая над первоначальной идеей SYZ, оксфордский геометр Найджел Хитчин, Марк Гросс и некоторые из моих бывших студентов (Найчанг Линг, Вейдонг Руан и другие) построили следующую картину. Рассмотрим многообразие X, состоящее из набора подмногообразий, перечисленных в пространстве модулей В. Теперь возьмем подмногообразия, имеющие радиус r, и заменим его на обратную величину 1/r. Одной из неожиданных, хотя и прекрасных особенностей теории струн, не присущей классической механике, является возможность провести подобную замену, а именно перевернуть радиус цилиндра, сферы или пространства, не изменив при этом их физические характеристики. Движение точечной частицы по окружности радиуса r можно описать при помощи ее момента импульса, который при этом квантуется - принимает строго определенные значения, кратные постоянной Планка - ℏ. Струна, движущаяся по окружности, также обладает моментом импульса, но, в отличие от точечной частицы, она может наматываться на окружность один или более раз. Число оборотов струны вокруг окружности называется ее топологическим числом. Итак, движение струны, в отличие от движения частицы, характеризуется двумя квантующимися величинами: ее моментом импульса и ее топологическим числом. Рассмотрим струну с топологическим числом, равным двум, и моментом импульса, равным нулю, движущуюся по окружности радиуса r, и струну с топологическим числом, равным нулю, и моментом импульса, равным двум (то есть 2ℏ), движущуюся по окружности радиуса 1/r. Хотя описания этих двух случаев звучат по-разному и вызывают в воображении разные картины, с математической точки зрения оба случая идентичны и приводят к одним и тем же физическим характеристикам. Это свойство известно как T-дуальность. "Эта эквивалентность переходит с окружностей на их [декартовы] произведения - торы", - говорит Заслоу. Буква T в названии "T-дуальность" и означает "торы". Строминджер, Заслоу и я сочли эту дуальность столь важной для зеркальной симметрии, что назвали нашу первую статью, посвященную гипотезе SYZ, "T-дуальность - это зеркальная симметрия".

Приведу простой пример, показывающий тесную взаимосвязь T-дуальности и зеркальной симметрии. Пусть многообразие М представляет собой тор - прямое произведение двух окружностей радиуса r. Многообразие, зеркальное к нему, М', также является тором - произведением двух окружностей радиуса 1/r. Представим себе теперь, что r чрезвычайно мало. Столь крошечный размер многообразия М приводит к тому, что для понимания связанной с ним физики нужно принимать во внимание квантовые эффекты. Таким образом, сложность расчетов многократно возрастает. Извлечь же физические характеристики из зеркального многообразия М', намного легче, поскольку для очень малого r величина 1/r будет очень велика, и квантовые эффекты можно свободно проигнорировать. Итак, зеркальная симметрия под личиной T-дуальности может существенно упростить ваши расчеты и жизнь в целом.

Назад Дальше