Наука логики - Гегель Георг Вильгельм Фридрих 36 стр.


Определенное количество этим положено как оттолкнутое от себя, благодаря чему, следовательно, имеются два определенных количества, которые, однако, сняты, суть лишь как моменты единого единства, и это единство есть определенность определенного количества. - Последнее, соотнесенное, таким образом, в своей внешности с собою как безразличная граница, · и, следовательно, положенное качественно, есть количественное отношение. - В отношении определенное количество внешне себе, отлично от самого себя; эта его внешность есть соотношение одного определен-

{271}

ного количества с другим определенным количеством, каждое из которых значимо лишь в этом своем соотношении со своим другим; и это соотношение составляет определенность определенного количества, представляющего собою такое единство. Определенное количество имеет в нем не безразличное, а качественное определение, в этой своей внешности возвратилось4, в себя, есть1 в ней то, что оно есть·.

Примечание 1 Определенность понятия математического бесконечного- Математическое бесконечное интересно, с одной стороны, произведенным им расширением математики и теми великими результатами, которые были достигнуты благодаря введению его в последнюю, но, с другой стороны, оно достойно внимания вследствие того, что этой науке еще не удалось оправдать посредством понятия (понятие мы здесь берем в собственном его смысле) его применение.

Предложенные оправдания основаны, в конечном счете, на правильности результатов, получающихся при помощи этого определения, правильности, доказанной из других оснований, но не на ясности предмета и операции, посредством, которой получаются эти результаты, и даже больше того: приводимые оправдания содержат признание того, что сама, эта операция неправильна.

Это уже само по себе есть нечто неудовлетворительное; такой образ действия ненаучен. Но он влечет за собою еще и ту невыгоду, что математика, не зная природы этого своего орудия вследствие того, чго не справилась с его· метафизикой и критикой, не могла также определить, объем его применения и обеспечить себя от злоупотребления им.

В философском же отношении математическое бесконечное важно потому, что на самом деле в его основании лежит понятие истинного бесконечного и оно стоит куда выше, чем обычно так называемое метафизическое бесконечное, исходя из которого против него выдвигаются возра272 жения. От этих возражений наука математика часто умеет спасаться лишь тем, что она отвергает компетенцию метафизики, утверждая, что ей нет дела до этой науки, что ей нечего заботиться о понятиях последней, если только она действует последовательно на своей собственной почве.

Она-де должна рассматривать не то, что истинно в себе, я то, что истинно в ее области.

При всех своих возражениях против математического бесконечного метафизика не может отрицать или" опровергнуть блестящих результатов, которые дало его применение, а математика не умеет выяснить метафизику своего собственного понятия и поэтому не в состоянии также и дать вывод тех приемов, которые делает необходимым применение бесконечного.

Если бы над математикой тяготело единственно только затруднение, причиняемое понятием вообще, то она могла бы без околичностей оставить его в стороне, поскольку именно понятие есть нечто большее, чем только указание существенных определенностей, т. е. рассудочных определений какой-нибудь вещи, а в недостаточной отчетливости этих определенностей математику никак нельзя упрекнуть; она могла бы оставить в стороне это затруднение, ибо она не есть такого рода наука, которая должна иметь дело с понятиями своих предметов и порождать свое содержание посредством развития понятия, хотя бы только путем (рассудочных) рассуждений. Но при методе применения ею своего бесконечного она встречает главное противоречие в самом том своеобразном методе, на котором она вообще основана как наука. Ибо исчисление бесконечного дозволяет и требует таких приемов, которые она должна отвергать при действиях над конечными величинами, и вместе с тем она обращается со своими бесконечными величинами, как с конечными определенными количествами и хочет применять к первым те же самые приемы, которые имеют место при действиях над последними. Основной чертой развития этой науки является то, что она применяла к трансцендентным определениям и действиям над ними форму обычного исчисления.

{273}

При всей этой противоречивости своих операций математика показывает, что результаты, которые она получает посредством их, вполне совпадают с теми, которые она получает посредством математического метода в собственном смысле, посредством геометрического и аналитического методов. Однако частью это касается не всех результатов, и целью введения исчисления бесконечно-малых является не только сокращение обычного пути, а получение таких результатов, которых последний не может дать. Частью же, с другой стороны, следует сказать, что успех сам по себе не оправдывает характера пути (die Manier des Wegs). А этот характер исчисления бесконечных оказывается пораженным видимостью неточности, которую он сам себе придает, когда конечные величины увеличиваются на бесконечно малую величину, и эта последняя в дальнейших действиях частью сохраняется, но некоторою частью ее также и пренебрегают. Этот прием заключает в себе ту странность, что, несмотря на признаваемую неточность, получается результат, который не только довольно точен и так близок к истинному результату, что можно не обращать внимания на разницу, но и совершенно точен. В самом же действии, предшествующем результату, нельзя обойтись без представления, что некоторые величины не равны нулю, но так незначительны, что их можно оставить без внимания.

Однако в том, что понимают под математической определенностью, совершенно отпадает всякое различие между большей или меньшей точностью, точно так же, как в философии не может итти речь о большей или меньшей вероятности, а единственно только о истине. Если метод и употребление бесконечных и оправдывается успехом, то все- таки вовсе не излишне, несмотря на это, требовать их оправдания; такое требование представляется не столь излишним, как, например, представляется излишним требовать доказательства права пользоваться собственным носом (43). Ибо в математическом познании, как представляющем собою научное познание, имеет существенную важность доказательство, а в отношении получаемых результатов тоже оказывается, что строго математический метод не для 18 Гегель, том V, Наука логики

{274}

всех их доставляет доказательство от успеха, которое, однако, и помимо этого является лишь внешним доказательством.

Стоит труда рассмотреть ближе математическое понятие бесконечного и те наиболее замечательные попытки, которые ставят себе целью оправдать пользование им и устранить затруднение, тяготеющее над методом.

Рассмотрение этих оправданий и определений математического бесконечного, которые я изложу в этом примечании более пространно, бросит вместе с тем наиболее яркий свет и на самую природу истинного понятия и· покажет, что оно предносилось уму авторов этих попыток и лежало в основании последних.

Обычное определение математического бесконечного гласит, что оно есть величина, больше которой, - если она определена как бесконечно большая, или меньше которой, если она определена как бесконечно малая, - уже нет или - в другой формулировке - как величина, которая в первом случае больше, а во втором меньше какой угодно другой величины. - В этой дефиниции, конечно, не выражено истинное понятие, а, наоборот, как мы уже заметили, здесь выражено лишь то же самое противоречие, которое содержится в бесконечном прогрессе. Но посмотрим, что содержится в ней самой по себе. Величина определяется в математике как то, что может быть увеличиваемо или уменьшаемо, следовательно, вообще, как безразличная граница. И вот, так как бесконечно-большое или бесконечно- малое есть нечто такое, что уже больше не может быть увеличиваемо или уменьшаемо, то оно на самом деле уже больше не есть определенное количество как таковое.

Этот вывод необходим и непосредственен. Но именно это соображение, показывающее, что определенное количество, - а я называю в этом примечании определенным количеством вообще то, что оно есть, а именно конечное количество, - снято, обыкновенно как раз и не приходит на ум, а между тем оно-то и составляет затруднение для обычного понимания, так как требуется, чтобы определенное количество, когда оно бесконечно, мыслилось как некое

{275}

снятое, как такое нечто, которое не есть определенное количество, но количественная определенность которого тем не менее сохраняется.

Если обратимся к тому, как относится к этому определению Кант*9 то увидим, что он его находит несогласую· щимся с тем, что понимают под бесконечным целым.

"Согласно обычному понятию та величина бесконечна, больше которой (т. е. больше содержащегося в ней множества данных единиц) не может быть никакая другая величина; но никакое множество не есть наибольшее, так как всегда возможно прибавить к нему одну или несколько единиц. - Относительно же бесконечного целого "мы не представляем себе, как оно велико, и, следовательно, его понятие не есть понятие некоторого максимума (или минимума), а мы мыслим через это понятие лишь его отношение к произвольно взятой единице, относительно которой оно больше, чем всякое число. Смотря по тому, примем ли мы эту единицу большей или меньшей, бесконечное будет большим или меньшим; но бесконечность, так как она состоит только в отношении к этой данной единице, остается всегда одной и той же, хотя, разумеется, абсолютная величина целого этим вовсе не будет узнана".

Кант порицает рассматривание бесконечного целого как некоторого максимума, как некоторого завершенного множества данных единиц. Максимум или минимум как таковой все еще представляется некоторым определенным количеством, множеством. Такое представление не может отклонить указанный Кантом вывод, который приводит к большему или меньшему бесконечному. Вообще, когда бесконечное представляют себе как определенное количество, для него сохраняет значение различие большего или меньшего. Но эта критика не касается понятия истинного математического бесконечного, бесконечной разности, ибо последняя уже больше не есть конечное определенное количество.

* В примечании к теэису первой космологической антиномии в "Критике чистого разумЪ".

18*

{276}

Напротив, понятие бесконечности, даваемое Кантом, понятие, которое он называет истинно трансцендентальным, гласит, что "последовательный "синтез единицы в измерении определенного количества никогда не" может быть завершен". В этом понятии предполагается, как данное, определенное количество вообще; требуется, чтобы оно было превращено посредством синтеза единицы в некоторую численность, в долженствующее быть указанным определенное количество, но, по утверждению Канта, невозможно когда-либо закончить этот синтез. Здесь очевидно выражено не что иное как бесконечный прогресс, который только представляют себе трансцендентально, т. е., собственно говоря, субъективно и психологически. Само по себе, дескать, определенное количество завершено, но трансцендентальным образом, т. е. в субъекте, сообщающем ему отношение к некоторой единице, возникает лишь такое определение определенного количества, которое не завершено и безоговорочно обременено потусторонним. Следовательно, здесь вообще застревают в противоречии, которое содержится в величине, но распределяют это противоречие между объектом и субъектом, так что на долю первого выпадает ограниченность, а на долю второго - выхождение за каждую представляемую им себе определенность, выхождение в дурную бесконечность.

Мы, напротив, уже сказали выше, что определение математического бесконечного и притом так, как его употребляют в высшем анализе, соответствует понятию истинного бесконечного; теперь мы предпримем сопоставление этих двух определений в более развернутом виде. - Что касается, прежде всего, истинно бесконечного определенного количества, то оно определилось как в самом себе бесконечное; оно таково, поскольку, как мы выяснили, и конечное определенное ' количество или определенное количество вообще, и его потустороннее или дурное бесконечное одинаково сняты. Снятое определенное количество возвратилось тем самым к простоте и к соотношению с собою самим, но не только так, как экстенсивное определенное количество, когда оно перешло в интенсивное определенное количество,

{277}

имеющее свою определенность в некотором внешнем многообразии лишь в себе, причем оно, однако, по предположению безразлично к этому многообразию и отлично от него. Бесконечное определенное количество содержит, напротив, во-первых, внешность и, во-вторых, ее отрицание в нем самом. Таким образом, оно уже больше не есть некоторое конечное определенное количество, не есть некоторая определенность величины, имеющая наличное бытие как определенное количество, а оно просто, и поэтому имеет бытие лишь как момент; оно есть определенность величины в качественной форме; его бесконечность состоит в том, что оно дано как некоторая качественная определенность.

Таким образом, оно как момент находится в существенном единстве со своим другим, имеет бытие, лишь как определенное этим своим другим, т. е. оно обладает значением лишь в связи с некиим, находящимся к нему в отношении.

Вне этого отношения оно нуль, "между тем как раз определенное количество как таковое, согласно предположению, безразлично к отношению и тем не менее является в нем некоторым непосредственным покоящимся определением.

В отношении оно, как представляющее собою лишь момент, не есть некое стоящее особняком (fur sich) безразличное; в бесконечности как для-себя-бытии, оно, будучи вместе с тем некоторой количественной определенностью, имеет бытие лишь как некоторое "для одного".

Понятие бесконечного, как оно изложено здесь абстрактно, окажется лежащим в основании математического бесконечного, и оно само сделается яснее, когда мы рассмотрим различные ступени выражения определенного количества как момента отношения, начиная с низшей ступени, на которой оно еще есть вместе с тем определенное количество как таковое, и кончая высшей, где оно получает значение и выражение бесконечной величины в собственном смысле.

Итак, возьмем сначала определенное количество в том отношении, в котором оно есть дробное число. Такая дробь, например, 2/7 не есть такое определенное количество, как 1, 2, 3 и т. д.; она есть, правда, обыкновенное конечное число, однако не непосредственное, подобно целым числам,

{278}

а, как дробь, определенное посредственно двумя другими числами, которые суть в отношении друг друга численность и единица, причем и единица также есть некоторая численность. Но взятые абстрагирование от этого их ближайшего определения в отношении друг друга и рассматриваемые лишь со стороны того, что в том качественном соотношении, в котором они здесь находятся, происходит с ними, как с определенными количествами 2 и 7 помимо этого соотношения суть безразличные определенные количества; но так как они здесь выступают как моменты друг друга и, стало быть, некоторого третьего (того определенного количества, которое называется показателем), то они имеют значение не как 2 и 7, а лишь со стороны их определенности в отношении друг друга. Вместо них можно поэтому поставить также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они, следовательно, начинают получать качественный характер. Если бы они имели значение просто как определенные количества, то пришлось бы признать, что 2 и 7 суть одно - лишь 2, а другое - лишь 7; 4, 14, 6, 21 и т. д. суть безоговорочно нечто другое, чем эти числа и, поскольку они суть лишь непосредственные определенные количества, они не могут быть подставлены одни вместо других. Но поскольку 2 и 7 имеют значение не со стороны той определенности, что они суть такие определенные количества, постольку их безразличная граница снята; они, стало быть, с этой стороны заключают в себе момент бесконечности, ибо они не только как раз уже больше не суть то, что они суть, а еще кроме того сохраняется их количественная определенность, но как в себе сущая качественная определенность, - а именно, согласно тому, что они значат в отношении. Вместо них может быть поставлено бесконечное множество других чисел;, так что величина дроби не изменяется вследствие той определенности, которую имеет отношение.

Но выражение, которое бесконечность находит в изображении ее числовой дробью, еще несовершенно потому, что оба члена дроби, 2 и 7, могут быть изъяты из отношения, и тогда они суть обыкновенные безразличные опреде-

{279}

ленные количества; их соотношение, то обстоятельство, что они суть члены отношения и моменты, есть для них нечто внешнее и безразличное. И точно так же само их соотношение есть обыкновенное определенное количество, показатель отношения.

Буквам, которыми оперируют в общей арифметике, т. е.

ближайшей всеобщности, в которую возводятся числа, не присуще свойство обладать определенной числовой величиной; они суть лишь всеобщие знаки и неопределенные возможности любой определенной величины. Дробь j- представляется поэтому более подходящим выражением бесконечного, так как а и Ь, изъятые из их взаимоотношения, остаются неопределенными и не обладают особой им принадлежащей величиной, даже будучи отделены друг от друга. - Однако, хотя эти буквы положены как неопределенные величины, их смысл все же состоит в том, что они суть какое-либо конечное определенное количество. Так как они суть хотя и всеобщее представление, но лишь об определенном числе, то для них равным образом безразлично то обстоятельство, что они находятся в отношении, и вне последнего они сохраняют то же самое значение.

Если присмотримся еще ближе к тому, что представляет собою отношение, то мы увидим, что ему присущи оба определения: оно, во-первых, есть некоторое определенное количество, но последнее есть, во-вторых, не некоторое непосредственное, а определенное количество, содержащее в себе качественную противоположность; оно вместе с тем остается в отношении тем данным, безразличным определенным количеством благодаря тому, что оно возвращается из своего инобытия, из противоположности, в себя, и, следовательно, есть также некоторое бесконечное. Эти два определения, развитые в их отличии друг от друга, представляются в следующей общеизвестной форме.

{2 1}

Дробь у может быть выражена как 0,285714…, 1-· - как 1 + а - f- а2 - f- д3 и т. д. Таким образом, она имеет бытие как некоторый бесконечный ряд; сама дробь называется суммой или конечным выражением этого ряда. Если

{280}

сравним между собою эти два выражения, то окажется, что одно, бесконечный ряд, уже представляет ее не как отношение, а с той стороны, что она есть некоторое определенное количество как множество таких количеств, которые присоединяются одно к другому, - как некоторая численность. - Что величины, долженствующие ее составить как некоторую численность, сами в свою очередь состоят из десятичных дробей, сами, следовательно, состоят из отношений, это здесь не имеет значения; ибо это обстоятельство касается особого рода единицы этих величин, а не их, поскольку они конституируют численность; ведь и состоящее из нескольких цифр целое число десятеричной системы также считается по существу одной численностью и· не обращается внимания на то, что она состоит из произведений некоторых чисел на число десять и его степени.

Назад Дальше