Шпаргалка по метрологии, стандартизации, сертификации - Мария Клочкова 10 стр.


Наблюдением при измерении называется единичная экспериментальная операция, результат которой – результат наблюдения – всегда имеет случайный характер. Он представляет собой одно из значений измеряемой величины, которые для получения результата измерения необходимо совместно обработать. От числа наблюдений зависит способ обработки экспериментальных данных и оценка погрешностей измерений.

53. СПЕЦИАЛЬНЫЕ ПРИЕМЫ ИЗМЕРЕНИЙ

Для точных измерений величин в метрологии разработаны приемы использования принципов и средств измерений, применение которых позволяет исключить из результатов измерений ряд систематических погрешностей и тем самым освобождает экспериментатора от необходимости определять многочисленные поправки для их компенсации, а в некоторых случаях вообще является предпосылкой получения сколько-нибудь достоверных результатов. Многие из этих приемов используют при измерении только определенных величин, однако существуют и некоторые общие приемы, названные методами измерения. При проведении наиболее точных измерений предпочтение отдается различным модификациям метода сравнения с мерой, при котором измеряемую величину находят сравнением с величиной, воспроизводимой мерой.

В рамках общих методов измерений в метрологической практике и в общем приборостроении часто применяются специальные приемы для исключения самих источников систематических погрешностей или их компенсации. Рассмотрим наиболее употребительные из этих приемов.

Параметрическая стабилизация очень широко применяется при ответственных измерениях. Этот прием используют для поддержания в заданных пределах температуры и влажности окружающей среды, напряжения питания и др. Наиболее распространены такие способы параметрической стабилизации, как термоста-тирование приборов, защита от воздействия вибраций, использование эффективных стабилизаторов в цепях электропитания приборов, экранирование приборов для защиты их от воздействия посторонних электрических, магнитных, радиационных и других полей.

Способ компенсации постоянных и периодических погрешностей по знаку. При реализации этого способа процесс измерения строится таким образом, что постоянная систематическая погрешность входит в результат измерения один раз с одним знаком, а другой раз – с другим. Тогда среднее из двух полученных результатов оказывается свободным от постоянной погрешности.

Способ вспомогательных измерений применяется в тех случаях, когда воздействие влияющих величин на результаты измерений вызывает большие погрешности измерений. Тогда идут на заведомое усложнение схемы измерительной установки, включая в нее элементы, воспринимающие значение влияющих величин, автоматически вычисляющие соответствующие поправки и вносящие их в полезные сигналы, которые поступают на отсчетные или регулирующие устройства.

В настоящее время наибольшее применение нашли специальные методы измерения, использующие оборудование, специально разработанное для измерения параметров с заданными метрологическими и эксплуатационными характеристиками (тип устройства, диапазон измеряемых параметров, погрешность измерений, время подготовки к повторному опыту, ресурс работы).

Например, специальные методы измерений скоростей используют два основных принципа измерений:

– измерение смещения частоты отраженного от движущегося тела сигнала относительно частоты основного сигнала (эффект Допплера);

– измерение интервала времени между сигналами датчиков пролета пули, разнесенных на величину измерительной базы.

Допплеровские измерители скоростей представляют собой сложные и дорогостоящие измерительные комплексы (типа измерительного комплекса "Ариэль"), пригодные для измерения скоростей на участках внутренней и внешней баллистики.

54. МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ

Каждое средство измерений обладает своими специфическими свойствами, которые описывают характеристиками, среди которых основное место занимают метрологические характеристики. Знание метрологических характеристик необходимо для выбора средств измерения и оценивания точности результата измерений. Существуют следующие метрологические характеристики средств измерений:

– номинальная статическая характеристика преобразования (функция преобразования – функциональная зависимость между информативными параметрами выходного и входного сигнала средства измерения, ее еще называют номинальной функцией преобразования средства измерения);

– чувствительность – отношение приращения выходного сигнала средства измерения к вызвавшему это приращение изменению входного сигнала. Применительно к измерительным приборам – если их чувствительность постоянна, то шкала прибора равномерная, т. е. длина всех делений шкалы одинаковая;

– диапазон измерений – область значений измеряемой нормированной величины, для которой нормируется погрешность средства измерения. Диапазон измерений ограничен наибольшим и наименьшим значениями. Для измерительных приборов область значений шкалы ограничивают начальным и конечным значениями шкалы, называют диапазоном показаний. Может делится на поддиапазоны;

– цена деления шкалы – разность значений величины, соответствующей двум соседним отметкам шкалы. Для средств измерений, выражающих результат измерения в цифровой форме, указывают цену единицы младшего разряда, вид выходного кода и число разрядов кода;

– для оценки влияния средства измерения на режим работы объекта исследования нормируется входное полное сопротивление. При включении средства измерения в цепь оно потребляет от этой цепи некоторую мощность, что может привести к изменению режима цепи;

– допустимая нагрузка на средство измерения и погрешность передачи сигнала измерительной информации зависит от выходного полного сопротивления;

– важнейшая характеристика средства измерения – погрешность, которую оно вносит в результат измерения или, как принято говорить, погрешность средства измерения. Погрешности средств измерений зависят от внешних условий, поэтому их принято делить на основную и дополнительную. Основная – погрешность в условиях, принятых за нормальные для данного средства измерения. Дополнительная погрешность – возникает при отклонении измеряемой величины от нормальных значений;

– динамические характеристики средств измерений – характеристики инерционных свойств. Средства, определяющие зависимость выходного сигнала средства измерения от меняющихся во времени величин: параметры входного сигнала, внешних влияющих величин, нагрузки и др. В зависимости от полноты описания динамических свойств средств измерения различают полные, частные динамические характеристики. К полным динамическим характеристикам относят переходную характеристику, амплитудно-фазовую, амплитудно-частотную, передаточную функцию и т. д. Для измерительных приборов – время реакции, время установления показаний, т. е. время от момента скачкообразного изменения измеряемой величины до момента установления с определенной погрешностью показаний.

55. ИСТИННЫЕ ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

При анализе измерений следует четко разграничивать два понятия: истинные значения физических величин и их эмпирические проявления – результаты измерений.

Истинные значения физических величин – это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении. Они не зависят от средств нашего познания и являются абсолютной истиной.

Результаты измерений представляют собой приближенные оценки значений величин, найденные путем измерения, они зависят от метода измерения, от технических средств, с помощью которых проводятся измерения, и от свойств органов чувств наблюдателя, осуществляющего измерения.

Разница А между результатами измерения X и истинным значением Qизмеряемой величины называется погрешностью измерения: А = X– Q.

Причинами возникновения погрешностей являются: несовершенство методов измерений, технических средств, применяемых при измерениях, и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений. Последние проявляются двояко. С одной стороны, все физические величины, играющие какую-либо роль при проведении измерений, в той или иной степени зависят друг от друга. Поэтому с изменением внешних условий изменяются истинные значения измеряемых величин. С другой стороны, условия проведения измерений влияют и на характеристики средств измерений и физиологические свойства органов чувств наблюдателя и через их посредство становятся источником погрешностей измерения.

Причины возникновения погрешностей определяются совокупностью большого числа факторов. Их можно объединить в две основные группы:

– случайные (в том числе грубые погрешности и промахи), изменяющиеся случайным образом при повторных измерениях одной и той же величины;

– систематические погрешности, остающиеся постоянными или закономерно изменяющиеся при повторных измерениях.

В процессе измерения оба вида погрешностей проявляются одновременно, и погрешность измерения можно представить в виде суммы:

А = 6 + 6, где 6 – случайная, а 6 – систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей математической обработкой опытных данных. Поэтому наибольшее значение имеет изучение погрешности как функции номера наблюдения, т. е. времени A(f). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

А1 = A(f1), А2 = A(f2),...А"= A(f"). В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t. Можно указать лишь вероятности появления ее значений в том или ином интервале. В серии экспериментов, состоящих из ряда многократных наблюдений, мы получаем одну реализацию этой функции. При повторении серии при тех же значениях величин, характеризующих факторы второй группы, неизбежно получаем новую реализацию, отличающуюся от первой.

56. СИСТЕМАТИЧЕСКАЯ ПОГРЕШНОСТЬ И ЕЕ ВИДЫ

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. Совершенствование методов измерения, использование высококачественных материалов, прогрессивная технология – все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях. В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

Погрешности метода – теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекающих процессов недостаточно быстро действующей аппаратуры, при измерениях температур жидкостными или газовыми термометрами и т. д.

Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины – теории точности измерительныхустройств.

Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т. д.

Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

57. ПОСТОЯННЫЕ И ПЕРЕМЕННЫЕ СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся:

– погрешности определения поправок;

– погрешности, зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

– погрешности, связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т. д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

58. НОРМАТИВНАЯ БАЗА ГОСУДАРСТВЕННОЙ СИСТЕМЫ ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Вся метрологическая деятельность в Российской Федерации основывается на конституционной норме, которая устанавливает, что в федеральном ведении находятся стандарты, эталоны, метрическая система и исчисление времени, и закрепляет централизованное руководство основными вопросами законодательной метрологии, такими как единицы ФВ, эталоны и связанные с ними другие метрологические основы. В развитие этой конституционной нормы приняты законы "Об обеспечении единства измерений" и "О техническом регулировании", детализирующие основы метрологической деятельности. Основными целями Закона "Об обеспечении единства измерений" являются:

– установление правовых основ обеспечения единства измерений в Российской Федерации;

– регулирование отношений государственных органов управления с юридическими и физическими лицами по вопросам изготовления, выпуска, эксплуатации, ремонта, продажи и импорта средств измерений;

– защита прав и законных интересов граждан, установленного правопорядка и экономики России от отрицательных последствий недостоверных результатов измерений;

– содействие прогрессу на основе создания и применения государственных эталонов единиц ФВ;

– гармонизация российской системы измерений с мировой практикой.

Единство измерений – состояние измерительного процесса, при котором результаты всех измерений выражаются в одних и тех же узаконенных единицах измерения и оценка их точности обеспечивается с гарантированной доверительной вероятностью. Для достижения единства измерений необходимо обеспечить единообразие средств измерений, т. е. такое состояние средств измерений, когда они проградуи-рованы в узаконенных единицах измерений, а их метрологические свойства соответствуют нормам.

Единство измерений достигается точным воспроизведением, хранением установленных единиц физических величин и передачей их размеров всем рабочим средствам измерений с помощью эталонов и образцовых средств измерений. Высшим звеном в метрологической цепи передачи размеров единиц измерений являются эталоны. Технической основой ГСИ является государственная эталонная база России. Эталонная база России состоит из 1176 государственных первичных и специальных эталонов.

Основными принципами обеспечения единства измерений являются:

– применение только узаконенных единиц физических величин;

– воспроизведение физических величин с помощью государственных эталонов;

– применение узаконенных средств измерений, которые прошли государственные испытания и которым переданы размеры единиц физических величин от государственных эталонов;

Назад Дальше