О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич 2 стр.


Однако главной задачей, которой Лукасевич посвятил всю свою жизнь, стала "борьба за освобождение человеческого духа" [6], причем, значительная роль в этом отводилась созданию новой логики. Всемирную известность принесло Лукасевичу построение первой системы многозначной логики в 1920 г., ее обобщение на произвольный конечнозначный случай в 1922/1923 гг. и в итоге построение в 1929 г. бесконечнозначной логики (см. подробно об этом в [3]). В 1930 г. Лукасевич совместно с А. Тарским [20] подвел итоги исследованию многозначных логик в Львовско-Варшавской школе.

Многозначные логики Лукасевича получили исключительное развитие в силу их необычайных свойств. Сошлемся только на книгу [23], где логики Лукасевича исследуются как пропозициональные исчисления; на книгу [14] (см. также [21]), где исследуются алгебраические свойства бесконечнозначной логики Лукасевича, начиная с исходных MV-алгебр Чэна и их непосредственной связи с функциональным анализом (AF C*-алгебры), с теорией кодирования, с квантовой физикой, с геометрией. Также была доказана эквивалентность MV-алгебр с другими важными алгебраическими структурами; на книгу [2], где исследуются алгебро-функциональные свойства конечнозначных логик Лукасевича, которые неожиданным образом оказались связанными со свойствами простых чисел (теорема В.К. Финна). Следствия этого открытия оказались совсем неожиданными: структурализация простых чисел в виде корневых деревьев; построение такой логики Kn+1, которая имеет класс тавтологий т.т.т., когда n есть простое число; штрих Шеффера для простых чисел; алгоритм порождения классов простых чисел.

Наконец, начиная с 1929 г., а сама идея пришла в 1924 г., Лукасевич использует бесскобочную запись формул (см. [11: 128]), которая по национальности Лукасевича стала называться польской системой записи формул, также известной как префиксная нотация (запись). Характерная черта такой записи – оператор располагается слева от операндов. Такую запись формул оценил А. Чёрч (см. [13]; примечание 91 на c. 41), а на ее важность для информатики обратил внимание А. Тьюринг, который встречался с Лукасевичем в 1949 г. В языках программирования особое применение получила обратная польская нотация (RPN, англ. Reverse Polish Notation) – такая форма записи математических выражений, в которой операнды расположены перед знаками операторов. Подобная запись лежит в основе идеи рекурсивного стека – специальной структуры для хранения данных в памяти компьютера. Она была предложена сразу несколькими исследователями, включая А. Тьюринга, Ф. Бауэра, Ч. Хэмблина и впервые реализована Хэмблином в 1957 г. В 1960 г. на базе рекурсивного стека компанией English Electric Company был создан компьютер KDF9, а корпорацией Burroughs – компьютер Burroughs B5000. Эти же идеи были использованы компанией Frieden в настольном калькуляторе EC-130, в калькуляторах компании Hewlett Packard, языке программирования Forth, языке описания страниц PostScript. В СССР на основе рекурсивного стека был создан инженерный калькулятор Б3-19М., выпущенный в 1976 г. В настоящее время такую же организацию имеет память программируемых калькуляторов "Электроника МК-152" и "ЭЛЕКТРОНИКА МК-161".

В 2008 г. Польское Общество Информационных Процессов установило премию имени Яна Лукасевича для наиболее инновационных польских информационно-технологических компаний.

Ссылки

[1] Воленьский Я. Львовско-Вашавская философская школа. М.: РОССПЭН, 2004.

[2] Карпенко А.С. Логики Лукасевича и простые числа. М.: URSS/ЛКИ, 2009, 3-е изд. (Английский перевод: Karpenko A.S. Łukasiewicz Logics and Prime Numbers. Beckington: Luniver Press, 2006).

[3] Карпенко А.С. Развитие многозначной логики. М.: URSS/ЛКИ, 2010.

[4] Лукасевич Я. Логика и психология и (см. настоящее издание).

[5] Лукасевич Я. О принципе противоречия у Аристотеля. Критическое исследование (см. настоящее издание).

[6] Лукасевич Я. Прощальная лекция проф. Яна Лукасевича, произнесенная в зале Варшавского университета 7 марта 1918 г. (см. настоящее издание).

[7] Лукасевич Я. О трехзначной логике (см. настоящее издание).

[8] Лукасевич Я. О детерминизме (см. настоящее издание).

[9] Лукасевич Я. О методе в философии // Исследования аналитического наследия Львовско-Варшавской философской школы. Санкт-перербург: Издательский дом "Мiръ", 2006, 263-265.

[10] Лукасевич Я. Логистика и философия // Философия и логика Львовско-Варшавской школы. М.: РОССПЭН, 1999, 198-218.

[11] Лукасевич Я. Аристотелевская силлогистика с точки зрения современной формальной логики. М.: Иностранная литература, 1959 (переиздана в 2000).

[12] Твардовский К. К учению о содержании и предмете представлений. Психологическое исследование // Твардовский К. Логико-философские и психологические исследования. М.: РОССПЭН, 1997, 38-159.

[13] Чёрч А. Введение в математическую логику. М.: Иностранная литература, 1960.

[14] Cignoli R., D'Ottaviano I.M.L. and Mundici D. Algebraic Foundations of Many-Valued Reasoning. Dordrecht: Kluwer, 2000.

[15] Font J.M. and Hájek P. On Łukasiewicz’s four-valued modal logic // Studia Logica 70 (2): 157-182, 2002.

[16] Jadczak R. Mistrz i jego uczniowie. Warszawa: W-wo Scholar, 1997.

[17] Łukasiewicz J. O indukcji jako inwersji dedukcji // Przegląnd Filozoficzny 6: 9-24 и 138-152, 1903.

[18] Łukasiewicz J. Analiza i konstrukcja pojecia przyczyny // Przegląnd Filozoficzny 9: 105-179, 1906.

[19] Łukasiewicz J. Elementy logiki matematycznej. Skrypt autoryzowany. Warszawa, 1929. (Английский перевод: Elements of Mathematical Logic. Oxford: Pergamon Press, 1966).

[20] Łukasiewicz J. and Tarski A. Investigations into the sentential calculus // Łukasiewicz J. Selected Works. Amsterdam & Warszawa: North-Holland & PWN. 1970, 131-152.

[21] Mundici D. Advanced Łukasiewicz Calculus and MV-algebras. Dordrecht: Kluwer, 2011.

[22] Woleński J. Historia odsyłacza // Ratione et Studio. Profesorowi Witoldowi Marciszewskiemu w darze, ed. K. Trzęsicki. Białystok: W-wo Uniwersytetu w Białymstoku, 2005, 249-268.

[23] Wójcicki R. and Malinowski G. Selected Papers on Łukasiewicz Sentential Calculi. Wroclaw: OSSOLINEUM, 1977. Bibliogr.: pp. 189-199.

Сборники избранных работ

Łukasiewicz J. Z zagadnien logiki i filozofii. Pisma wybrane. Warszawa: PWN, 1961 (J. Slupecki ed.)

Łukasiewicz J. Logika i metafizyka. Warsawa: Wydzial Filozofii i Socjologii Uniwersytetu Warszawskiego, 1998 (J. J. Jadacki ed.)

Łukasiewicz J. Selected Works. Amsterdam & Warszawa: NorthHolland & PWN. 1970 (L. Borkowski ed.)

Краткая библиография

Borkowski L. and Slupecki J. The logical works of J. Łukasiewicz // Studia Logica 8: 7-56, 1958.

Craig E. (general editor). Article: Jan Łukasiewicz // Routledge Encyclopedia of Philosophy, Vol. 5. London: Routledge, 1998, 860–863.

Goe G. Łukasiewicz, Jan // Biographical Dictionary of Mathematicians, Vol. 3. Cengage Gale, 1991, 1625-1626.

Kotarbinski T. Jan Łukasiewicz's works on the history of logic // Studia Logica 8: 57-62, 1958.

Kwiatkowski T. Jan Łukasiewicz – A historian of logic // Organon 16-17: 169-188, 1980-1981.

Lejewski C. Jan Łukasiewicz // The Encyclopedia of Philosophy (P. Edwards ed.), Volume 3. NY: Macmillan, 1967, 104-106.

Łukasiewicz J. Curriculum vitae of Jan Łukasiewicz // Metalogicon 7(2): 133-137, 1994.

Mostowski A. L’oeuvre scientifique de Jan Łukasiewicz dans le domaine de la logique mathématigue // Fundamenta mathematicae 44, 1-11, 1957.

Prior, A. N. Łukasiewicz's contribution to logic // Philosophy in the Mid-century, a Survey, (R. Klibanski ed.). Vol. I: Logic and Philosophy of Science. La Nuova Italia, Firenze, 1958, 53-55.

Scholz, H. In memoriam Jan Łukasiewicz // Arch. Math. Logik Grundlagenforsch 3: 3-18, 1957.

Sobociński B. In Memoriam Jan Łukasiewicz // Philosophical Studies (Maynooth, Ireland) 6: 3-49, 1956.

Slupecki, J. Jan Łukasiewicz (на польском) // Wiadomosci matematyczne 2(15): 73-78, 1972.

Woleński, J. Jan Łukasiewicz (на польском) // Mathematics at the Turn of the Twentieth Century. Katowice, 1992, 35-38.

Карпенко А.С. и Порус В.Н. Лукасевич Я. // Новая Философская Энциклопедия, т. II. Москва: "Мысль", 2001, 456-457.

А.С. Карпенко и Б.Т. Домбровский

Ян Лукасевич против Яна Лукасевича (вступительная статья)

"Он [Аристотель] увяз в противоречиях при рассмотрении самого принципа противоречия".

Я. Лукасевич (1910)

1. В мире определенно что-то произошло, что-то изменилось, если не во всем мире, то в научном сознании, и если не у всех, то уж точно в мире современной логики. Об этих тонких изменениях говорит следующий факт. Изданная в 1910 году книга молодого польского философа и логика Яна Лукасевича"О принципе противоречия у Аристотеля. Критическое исследование" внезапно оказалась настолько актуальной, что спустя почти столетие ее одновременно стали переводить на основные европейские языки с многочисленными комментариями.

Новая жизнь книги Яна Лукасевича началась с ее переиздания Я. Воленьским в 1987 г. [Lukasiewicz 1910a/1987]. Затем произошло то, чего никто не ожидал: в 1994 г. книга была переведена на немецкий язык, в 2000 г. на французский, в 2003 г. на итальянский, а недавно стало известно, что готовится ее английское издание. Теперь предлагаем вашему вниманию русский перевод.

2. Время, на фоне которого происходило переиздание книги, начиная с 1987 г., ознаменовалось полной победой паранепротиворечивости над принципом (законом) противоречия, фундаментальным логическим принципом, согласно которому два взаимнопротиворечащих высказывания не могут быть одновременно истинными, т. е. одно из них должно быть ложным. В современной логике высказываний это выражается тождественно истинной или доказуемой формулой вида (A & А): неверно, что А и в то же время не-А. Нарушение закона противоречия в большинстве логических исчислений приводит к доказуемости любой сформулированной на языке этого исчисления формулы, и ясно, что такая логика не представляет никакого интереса, поскольку всё истинно и всё доказуемо. Это с очевидностью следует из того, что в таких логиках имеет место закон ex contradictione quodlibet: (A & А) → B, хорошо известный средневековым логикам. Тогда при наличии противоречия A & А по правилу modus ponens получаем произвольную формулу B, которая может говорить о чем угодно.

Однако с середины XX в. бурное развитие получили системы паранепротиворечивой логики, которые позволяют "локализовать" действие противоречия в том смысле, что наличие в теории противоречия A & А не ведет последнюю к разрушению. Построение паранепротиворечивых логик явилось реализацией тезиса о не универсальности закона противоречия. Но кто-то должен был первым усомниться в принципе противоречия и, более того, осмелиться осознанно пойти против Аристотеля, который утверждал, что принцип противоречия есть начало "наиболее достоверное из всех ‹…›. А именно: невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении" (Метафизика Г 3, 1005b 19-21). И далее: "ведь по природе оно начало даже для всех других аксиом" (Метафизика Г 3, 1005b 33-34).

3. Принципу противоречия, сформулированному и тщательно рассмотренному Аристотелем, посвящена значительная литература. Надо было быть весьма незаурядной личностью, чтобы подвергнуть резкой критике принцип противоречия, освященный авторитетом Аристотеля, и более того, обвинить в противоречиях его самого. Сражение, в которое вступает Лукасевич, начинается с критики необоснованного возвеличивания Аристотелем принципа противоречия. Но в его действиях есть еще одна тайная пружина, о которой мы скажем чуть позже.

Лукасевич впервые выделяет три формулировки принципа противоречия у Аристотеля. Первая, онтологическая, является основной и формулируется как универсальный принцип бытия (см. выше: Метафизика Г 3, 1005b 20-21). Вторая формулировка является логической: "…наиболее достоверное положение – это то, что противолежащие друг другу высказывания не могут быть вместе истинными" (Метафизика Г 6 1011b 13-14). Третья формулировка называется психологической: "не может кто бы то ни было считать одно и то же существующим и не существующим" (Метафизика Г 3 1005 b 23-24).

Здесь Лукасевич поднимает очень интересный вопрос: выражают ли эти три формулировки один и тот же принцип, но в разных аспектах или это одно и то же? Для ответа на этот вопрос он развивает теорию синонимичности и эквивалентности языковых выражений, впоследствии уточненную им в других работах. Два суждения являются синонимами, т. е. имеют одно и то же значение, если они выражают одну и ту же мысль, используя разные слова, например, "Аристотель был создателем логики" и "Стагирит был создателем логики". Два суждения являются эквивалентными, если первое следует из второго и второе следует из первого. Отсюда следует, что синонимичность влечет эквивалентность, но не наоборот. Например, суждения "Аристотель был учеником Платона" и "Платон был учителем Аристотеля" эквивалентны, но они не являются синонимами, поскольку первое говорит об Аристотеле, а второе о Платоне. В таком случае все три формулировки принципа противоречия не являются синонимичными, поскольку первая говорит об объектах и свойствах, вторая – о высказываниях (суждениях, предложениях), а третья – о некоторых психологических актах (убеждениях, мнениях и т. д.) Далее, Лукасевич аргументирует, что даже несинонимичные высказывания могут быть эквивалентными, и хотя у Аристотеля это проведено не совсем четко, но можно показать, что для него первая и вторая формулировка принципа противоречия эквивалентны на основе хорошо известного определения Аристотелем понятия истины: "… говорить, что сущее есть и не-сущее не есть, – значит говорить истинное" (Метафизика Г 7 101 lb 27).

Назад Дальше