§ 3. Сила и вес
На первый взгляд все знают, что такое сила. Так, в популярном американском учебнике "Физика" авторы Эллиот и Уилкокс на вопрос "что такое сила" отвечают: "Сила это толчок или тяга" (стр. 50). Согласиться с этим невозможно. В технике есть термин "сила тяги" (например, трактора). Если подставим толкование силы из иностранного учебника в наш технический термин, получим выражение "тяга тяги". Это звучит абсурдно.
В традиционных учебниках также встречаются выражения типа сила инерции, центробежная сила, сила противодействия и т. п. Там же можно прочитать, что сила это напор, натиск, в общем, смотри выше. Возьмём, к примеру, выражение "сила инерции", которое встречается всюду. Его надо понимать так, что существует "инерция", у которой есть "сила". Инерцией называют свойство изолированного от внешних полей тела сохранять свою скорость. Это отвечает закону сохранения энергии. Но что такое "сила инерции" для изолированного тела? Может, "тяга инерции"? Откуда "тяга", если тело ничто не тянет? Может, "напор инерции"? Но изолированное тело ни на что не напирает. Как измерять силу инерции изолированного тела? Ответа нет нигде.
Думается, нам не стоит тратить время, пытаясь объяснить необъяснимое. Мы должны сказать следующее: коль скоро физики вот уже триста лет не могут придумать определение силы, значит, сила это не физическая величина, а математическая. Иначе говоря, сила – это количественная характеристика движения. Тогда достаточно определить силу математически и принять её как математический объект. Разберем это на примере из гравитации.
Известно, что вес Р – это проявление силы притяжения (F). Можно написать F = P без переходного коэффициента, так как силу тоже измеряют в ньютонах. Вспомним, гиря весом Р на высоте h имеет энергию Ep=Ph (3.1). Тогда: F = P = Ep/h (3.2). Если h = 1 м, то из (3.2) следует, что F = Еp. То есть, сила численно равна энергии, переданной телу при его подъёме на 1 м. Это подтверждает мысль, что сила определяет энергию, передаваемую от тела к телу при их взаимодействии. Если энергию передавать быстро, увеличивается скорость передачи энергии. Можно сказать, что сила – это величина, характеризующая темп передачи энергии от тела к телу. Мы говорим "темп", так как потенциальная энергия зависит от местоположения тела, которое определяется в метрах. Кинетическая энергия передаётся путем изменения скорости, которая зависит от времени. В этом случае можно сказать, что сила – это величина, характеризующая скорость передачи энергии.
Из космических исследований известно, что на Луне вес тела в шесть раз меньше, чем на Земле. Это значит, что сила притяжения Луны в шесть раз меньше, чем у Земли. Введем для поля тяготения коэффициент гравитации g следующим образом: P = gm (3.3). Уравнение (3.3) показывает, что с увеличением гравитации вес тела растёт. Из геофизических измерений известно, что у поверхности Земли величина gз равна в среднем около 10 м/с. Значит, для Луны коэффициент гравитации gл равен примерно 1.6 м/с. Из (3.3) следует, что g = P/m (3.4). С учётом (3.4) можно написать, что сила гравитации F = gm (3.5). Тогда потенциальную энергию тела в поле гравитации g можно выразить как Ep = Ph = Fh = mgh (3.6).
§ 4. Превращения энергии
Рассмотрим, как потенциальная энергия переходит в кинетическую при движении тела в поле гравитации. Возьмём уравнение для полной энергии: Е=Ер+Ек. В примере с аэростатом потенциальная энергия баллона в начале опыта была равна Ep = mgh, а кинетическая равна нулю (v=0). После того, как баллон упал на землю, его потенциальная энергия стала равна нулю, так как h=0. Зато в момент падения кинетическая энергия баллона стала максимальной: Ек = mv/2. Таким образом, при падении в поле гравитации потенциальная энергия тела превращается в кинетическую энергию в соответствии с законом сохранения энергии. Заметим, что на высоте s=h/2 потенциальная энергия mgs падающего баллона в точности равна половине полной энергии mgh. Значит, на высоте s потенциальная энергия Ерs равна кинетической энергии Екs. Тогда мы можем написать: Е/2 = Ек, или Е/2 = mv/2, или Fs = mv (4.1). Если на высоте s скорость v приравнять к s/t (средняя скорость на пути от высоты h до высоты s), мы можем записать уравнение (4.1) в виде Fs = ms/t. Сокращая на s, получаем: F = ms/t (4.2).
Выражение s/t есть не что иное, как ускорение из (2.1): а = s/t (4.3). Подставляя (4.3) в (4.2) получим в итоге уравнение: F = ma (4.4).
Уравнение (4.4), которое позволяет вычислить силу F, нужную для придания ускорения a телу с массой m, называют вторым законом Ньютона.
К примеру, если у новогодней шутихи масса равна 0.2 кг и она взлетает в небо с ускорением 5 м/с, это значит, что сила тяги ракеты равна: F = 0.2*5=1 (Н).
В стандартном учебнике уравнение (4.4) дают в готовом виде. Считается, что оно получено опытным путём. Мы вывели уравнение (4.4) из закона сохранения энергии (2.4), который, тоже является обобщением опытных данных.
§ 5. О размерностях физических величин
Отражением закона сохранения энергии является первый закон Ньютона. Сам автор сформулировал его так: если на тело не действует другое тело, то скорость сохраняется: v = const. Возникает вопрос, как измерять скорость? Вопрос не простой. Представим, авиагруппа "Стрижи" в составе пяти самолетов выполняет групповой полёт. Группа летит относительно земли со скоростью 500 км/час. При этом скорость одного самолета относительно другого равна нулю. Разница весьма существенна.
Чтобы избежать расхождений, в физике приняли единую систему физических величин, которую назвали международная система SI (СИ). Физика – наука практическая. Чтобы найти, какую силу надо приложить, нужно знать, как единицы измерения связаны между собой. В основу системы СИ положены три природные величины: единица длины – 1 м, единица массы – 1 кг, единица времени – 1 с. Для них приняты символы: L, M, T. Все другие единицы можно выразить через L, M, T, при помощи соответствующих уравнений.
Комбинацию L, M, T, взятую в квадратные скобки, принято называть размерностью физической величины. Например, размерность скорости v = s/t выражается через символы L, M, T как: [v] = [L/T]. Размерность силы F можно выразить при помощи уравнения (4.4): [F]=[ML/T].
Возникает естественный вопрос: зачем это надо? Дело вот в чём. Чтобы изучать формы энергии, уравнения движения, которые определяют передачу энергии от тела к телу, записывают в виде равенства комбинаций физических величин. Если в чистой математике единицы измерения не важны, в физике и технике все по-другому. В физике знак равенства означает, что какими бы не были комбинации величин по обе стороны знака, их размерности должны совпадать. Представим, в инструкции по испытанию лифта прописано: "Лифт испытывать грузом не менее 5000 Н". Но гири весом Р = 5 кН не бывает. Значит, в кабину лифта надо затащить 10 гирь по 500 Н или пять гирь по 1000 Н или другой набор гирь, но такой, чтобы в сумме их вес был бы равен 5 кН: Р = Р1 + Р2 + Р3 + …+ Рn. = 5 кН.
Рассмотрим ещё пример. В предыдущей главе мы составляли уравнение: Fs=mv. Проверим размерности слева и справа от знака равенства. Слева: [Fs] = [ньютон*метр]. Справа: [mv]= [m]*[L/T] = [m] *[L/T]*[L] = [m*a]*[L] = [F]*[s] = [ньютон*метр]. Совпадение размерностей означает, что уравнение, возможно, составлено правильно. Вот если бы размерности не совпали, можно было сразу сказать, что уравнение составлено неверно.
§ 6. Закон всемирного тяготения
Мы уже говорили, что любое массивное тело является источником гравитации. Очевидно, чем больше масса тела, тем сильнее поле тяготения вокруг него. Интересно узнать, от чего ещё зависит сила притяжения? Известно, что на Луне вес тела всего в шесть раз меньше, чем на Земле, хотя масса Луны в 81 раз меньше земной. Значит, сила притяжения зависит не только от массы. Заметим, что морские приливы на Земле от притяжения Солнца намного меньше, чем от Луны, хотя Солнце неизмеримо массивнее. Разница в том, что расстояние от Земли до Солнца намного больше, чем до Луны. Очевидно, сила притяжения зависит также от расстояния до источника гравитации. Изучение высоты прилива в зависимости от расстояния до источника гравитации показывает, что сила тяготения зависит от расстояния в квадрате до центра гравитации. Докажем это.
Разделим радиус Земли на радиус Луны и возведем в квадрат: 6 380 км / 1 740 км = 3.66; 3.66*3.66 = 13.4. Мы получили отношение квадратов расстояний до центров гравитации. Отношение масс Земли и Луны известно, оно равно 81. Разделим отношение масс на отношение квадратов радиусов: 81/13.4 = 6, что в точности равно отношению веса тела на Земле к весу того же тела на Луне. Это значит, что гравитация на Луне в шесть раз меньше гравитации на Земле, что и требовалось доказать. Следовательно, поле гравитации вокруг тела пропорционально массе тела и обратно пропорционально квадрату расстояния до центра тела: g = GM/R (6.1). Коэффициент G нужен, чтобы совпали размерности по обе стороны знака равенства. Из требований системы СИ следует, что размерность G равна: [G] = [L/MT]. Коэффициент G называется "постоянная гравитации". От её значения зависит время жизни звёзд, галактик, в общем, зависит всё. В нашей Вселенной величина постоянной гравитации равна: 6.67*10 м/кг*с.
Чтобы узнать, с какой силой притягивает к себе тело с массой М, умножим обе части (6.1) на массу m (масса второго тела), получим: mg = GMm/R (6.2). Слева получился вес второго тела Р, который равен силе притяжения: F = GMm/R (6.3).
Уравнение (6.3) известно как закон всемирного тяготения. Его тоже открыл Ньютон. С помощью уравнения (6.3) можно вычислить силу притяжения между любыми телами, если известны их массы и расстояние между их центрами. Покажем на учебном примере (задаче).
Задача: С какой силой притягиваются два танкера, стоящие борт о борт, если масса каждого из них равна 100 000 тонн, а ширина корпуса равна 32 метра? Решение: расстояние между центрами танкеров равно 32 м, значит, R= 32*32 ~ 1000 м. Подставляя в (6.3) получим:
F = 6.67*10*10*10/10= 667. Ответ: танкеры притягиваются с силой 667 Н.
§ 7. Невесомость
Нередко можно услышать фразу, что космонавты на орбите испытывают невесомость, потому что центробежная сила уравновешивает силу притяжения Земли. Согласиться с этим невозможно. Мы уже говорили, что взаимодействовать могут только тела. Сила – не материальное тело. Сила это математический объект, формула, которая существует только на бумаге. Компенсировать притяжение можно, только разместив "над" спутником другой центр притяжения, т. е. другую планету. В нашем случае, избавиться от притяжения Земли можно только полностью подчинившись ему, т. е. начать падать с высоты по направлению к центру Земли. Тот, кто падает, ничего не весит. Покажем на опыте, как возникает невесомость на орбите.
Представим, что на гору Эверест (h = 8 км) втащили пушку и выстрелили в горизонтальном направлении. Скорость снаряда пусть будет 1 км/с. Ускорение свободного падения на Землю примерно равно 10 м/с. Попробуем вычислить время t падения снаряда на землю. Путь снаряда h по вертикали равен 8 км. Если скорость была бы постоянна, то h = vt. В данном случае снаряд падает с ускорением g, значит, в конце падения скорость равна gt. Учитывая, что начальная скорость по вертикали была нулевая (пушка направлена строго по горизонтали), средняя скорость падения vc = (0+gt)/2= gt/2. Тогда путь h=vct = gt/2 (7.1). Отсюда, время падения снаряда с высоты Эвереста равно t = √2h/g (7.2). Подставляя известные данные, получим t=√1600 = 40 (с). Значит, по горизонтали снаряд успеет пролететь 40 км, но затем всё равно упадет на землю. Мысленно увеличим исходные данные до планетарных масштабов. Представим гору высотой h = 320 км (высота орбиты спутника), а скорость снаряда увеличим до 8 км/с (первая космическая скорость). Время падения с такой высоты по формуле (7.2) равно 250 секунд. За это время снаряд улетит по горизонтали на 2000 км. Это расстояние сопоставимо с радиусом Земли, который равен 6400 км. Представим окружность с таким радиусом и проведём к ней отрезок касательной длиной 2000 км. Мы увидим, что конец отрезка отделяют от окружности Земли всё те же 320 км. Значит, через 250 секунд падения снаряд снова окажется на высоте 320 км над Землёй и всё повторится. Таким образом, спутник на орбите находится в состоянии падения, но никак не упадет, так как поверхность Земли из-за своей кривизны буквально уходит из-под ног космонавтов, которые "вечно" падают вместе со своей космической станцией, "наслаждаясь" состоянием невесомости.
§ 8. Импульс силы.
Импульсом силы (или просто импульсом) называют произведение массы тела на его скорость: p = mv (8.1). Иногда вместо "импульс" говорят "количество движения" (мы уже говорили о традиции называть одну величину разными терминами). Возникает вопрос, зачем нужен импульс, если есть энергия? Дело в том, что многие задачи решаются проще при помощи теории, основанной на понятии импульса. Например, оружейникам надо знать скорость отдачи пушки в зависимости от скорости снаряда. Здесь возникает особая проблема. До выстрела скорости пушки и снаряда были равны нулю. После выстрела они разлетаются в разные стороны. Разумеется, полная энергия сохраняется, но как учесть энергию порохового заряда? Мы должны придумать какой-то другой закон, независимый от закона сохранения энергии. Рассмотрим конкретный случай.
Допустим, из корабельной пушки массой 400 кг выстрелили ядром массой 2 кг. Отдача такова, что пушка откатывается назад со скоростью 1 м/с. Скорость пушки изменилась. Кроме того, часть энергии унеслась вместе с ядром. Уравнение (2.4) здесь не поможет, хотя мы уже понимаем, что-то должно сохраняться. Но что? У ядра масса мала, скорость велика. У пушки – наоборот. Кроме того, после выстрела ядро летит в одну сторону, пушка откатывается в противоположную. Что, если сохраняется полный импульс – сумма импульсов ядра и пушки? Если их сумма после выстрела тоже будет равна нулю, значит, полный импульс сохраняется. Для этого нужно знать скорость ядра.
Измерения показали, что дистанцию 400 м до цели ядро пролетело за 2 с. Значит, скорость ядра была 200 м/с. Обозначим импульс ядра после выстрела индексом "я", импульс пушки – индексом "п". Если полный импульс после выстрела тоже равен нулю: ря +рп = 0, то рп = – ря (8.1). Подставляя числа, получаем для ядра: pя = mяvя = 2*200 = 400 кг*м/с (8.2). Тогда для пушки: pп = mпvп = – pя = – 400 кг*м/с (8.3). Ответ получился меньше нуля. Но масса пушки не может быть отрицательной. Допустим, в (8.3) отрицательна скорость: vп = -1 м/с. Проверяем: ря +рп = 400–400 = 0 (8.4). Это значит, что полный импульс сохраняется. Заметим, что полный импульс не обязательно должен быть нулевым.
Теперь при помощи закона сохранения импульса легко вычислить скорость отдачи любого стрелкового оружия.
Пример: Вычислить скорость отдачи автомата Калашникова (АК) при одиночном выстреле. Решение: Масса АК (без магазина) равна 3.6 кг. Скорость пули равна 800 м/с. Массу пули берем классическую, 9 граммов = 0.009 кг. Запишем уравнение сохранения импульса для данного случая: mа*va+ mп*vп= 0. Значит, va= – mп*vп/ ma(8.5). Подставляя числа, получим: va= – 0.009*800/3.6 = – 7.2/3.6 = – 2 (м/с). Чтобы уменьшить отдачу, рекомендуют плотно прижимать приклад к плечу. Тем самым увеличивается общая масса опоры. Предположим, масса стрелка равна 68.4 кг, вместе с автоматом это будет 68.4 = 3.6 = 72 (кг). Тогда скорость отдачи: 7.2/72 = 0.1 (м/с) или 10 см в секунду, что вполне приемлемо.