Охрана труда на производстве и в учебном процессе - Сергей Вольхин 12 стр.


Исследования, проведенные в условиях производства, свидетельствуют, что в случае резко выраженного инфразвука относительно небольших уровней, например 95 и 100 дБ при общем уровне шума 60 дБ, отмечаются жалобы на раздражительность, головную боль, рассеянность, сонливость, головокружение. В то же время при наличии интенсивного широкополосного шума даже с достаточно высокими уровнями инфразвука указанные симптомы не появляются. Этот факт вероятнее всего связан с маскировкой инфразвука шумом звукового диапазона.

Ультразвуком принято считать колебания частотой выше 20 кГц, распространяющиеся как в воздухе, так и в твердых средах, т. е. ультразвук контактирует с человеком через воздух и непосредственно от вибрирующей поверхности (инструмента, аппарата и других возможных источников).

Ультразвуковая техника и технология широко применяется в различных отраслях народного хозяйства для целей активного воздействия на вещества (пайка, сварка, лужение, механическая обработка и обезжиривание деталей и т. д.), структурного анализа и контроля физико-механических свойств вещества и материалов, (дефектоскопия), для обработки и передачи сигналов в радиолокационной и вычислительной технике, в медицине – для диагностики и терапии различных заболеваний с использованием звуковидения, резки и соединения биологических тканей, стерилизации инструментов, рук и т. д.

Ультразвуковой диапазон частот условно делится на низкочастотный – от 1,12–10 до 1,0-10 Гц и высокочастотный – от 1,0-10 до 1,0-10 Гц (ГОСТ 12.1.001-89). Ультразвуковые установки с рабочими частотами 20–30 кГц находят широкое применение в промышленности. Наиболее распространенные уровни звукового и ультразвукового давлений на рабочих местах на производстве составляют 90-120 дБ. Пороги слухового восприятия высокочастотных звуков и ультразвуков составляют на частоте 20 кГц 110 дБ, на 30 кГц – до 115 дБ и на 40 кГц – до 130 дБ. Учитывая, что низкочастотные ультразвуки (до 50 кГц) значительно больше, чем высокочастотные шумы, затухают в воздухе по мере удаления от источника колебаний, можно предположить их относительную безвредность для человека, тем более что на границе сред "кожа и воздух" происходит крайне незначительное поглощение падающей энергии (порядка 0,1 %). В то же время ряд исследований свидетельствует о возможности неблагоприятного действия ультразвука через воздух. Наиболее ранние неблагоприятные субъективные ощущения отмечались у работников, обслуживающих ультразвуковые установки, – головные боли, усталость, бессонница, обострение обоняния и вкуса, которые в более поздние сроки (через 2 года) сменялись угнетением перечисленных функций. У работников, обслуживающих ультразвуковые промышленные установки, выявлены нарушения в вестибулярном анализаторе. Ультразвук может воздействовать на работников через волокна слухового нерва, которые проводят высокочастотные колебания, и специфически влиять на высшие отделы анализатора, а также на вестибулярный аппарат, который тесно связан со слуховым органом. Исследования отечественных ученых по оценке влияния воздушных ультразвуков на животных и человека позволили разработать нормативы, ограничивающие уровни звукового давления в высокочастотной области звуков и ультразвуков в 1/3-октавных полосах частот.

Допустимые уровни высокочастотных звуков и ультразвуков следующие:

Охрана труда на производстве и в...

Высокочастотный ультразвук практически не распространяется в воздухе и может оказывать воздействие на работников только при контакте источника ультразвука с поверхностью тела.

Низкочастотный ультразвук, напротив, оказывает на работающих общее действие через воздух и локальное за счет соприкосновения рук с обрабатываемыми деталями, в которых возбуждены ультразвуковые колебания. Эффекты, вызываемые ультразвуком, можно условно подразделить на механические – микромассаж тканей, физико-химические – ускорение процессов диффузии через биологические мембраны и изменение скорости биологических реакций, термические, а также эффекты, связанные с возникновением в тканях ультразвуковой кавитации (под воздействием только мощного ультразвука). Все это указывает на высокую биологическую активность данного физического фактора.

Условия труда работающих при различных процессах с применением высокочастотного ультразвука весьма разнообразны. Например, труд операторов ультразвуковой дефектоскопии сопровождается психоэмоциональной нагрузкой и утомлением зрительного анализатора, связанными с необходимостью расшифровки сигналов, перенапряжением опорно-двигательного аппарата, особенно кистей рук, что обусловлено вынужденной позой и характером совершаемых кистью движений, связанных с перемещением искателя по контролируемой поверхности.

В условиях производства ультразвук, распространяющийся контактным путем, может сочетаться с комплексом неблагоприятных факторов внешней среды: неудовлетворительными микроклиматическими условиями, запыленностью и загазованностью воздуха, высокими уровнями шума и др. В результате значительного поглощения в тканях неблагоприятные эффекты, развивающиеся под действием ультразвука при контактной передаче, обычно выражены в зоне контакта. Чаще всего это пальцы рук, кисти, хотя возможны и дистальные проявления за счет рефлекторных и нейрогуморальных связей.

Длительная работа с интенсивным ультразвуком при его контактной передаче на руки может вызывать поражение периферического нервного и сосудистого аппарата (вегетативные полиневриты, парезы пальцев). При этом степень выраженности изменений зависит от времени контакта с ультразвуком и может усиливаться под влиянием неблагоприятных сопутствующих факторов производственной среды.

Нормируемыми параметрами ультразвука, распространяющегося контактным путем, являются пиковое значение виброскорости (м/с) в полосе частот 8-31,5-10 кГц или его логарифмический уровень в децибелах (дБ).

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются следующие:

устранение причины шума или существенное его ослабление в самом источнике при разработке технологических процессов и проектировании оборудования;

изоляция источника шума от окружающей среды средствами звуко– и виброзащиты, звуко– и вибропоглощения;

уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий;

рациональная планировка помещений;

применение средств индивидуальной защиты от шума;

рационализация режима труда в условиях шума;

профилактические мероприятия медицинского характера.

Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация от ударов, трения, механических усилий и т. д., – улучшение конструкции оборудования (изменение технологии с целью устранения удара). Снижение шума и вибрации достигается заменой возвратно-поступательного движения в узлах работающих механизмов равномерным вращательным.

При невозможности достаточно эффективного снижения шума за счет создания совершенной конструкции той или иной машины следует осуществлять его локализацию у места возникновения путем применения звукопоглощающих и звукоизолирующих конструкций и материалов. Воздушные шумы ослабляются установкой на машинах специальных кожухов или размещением генерирующего шум оборудования в помещениях с массивными стенами без щелей и отверстий. Для исключения резонансных явлений кожухи следует облицовывать материалами с большим внутренним трением.

Для снижения структурных шумов, распространяемых в твердых средах, применяются звуко– и виброизоляционные перекрытия. Ослабление шума достигается применением под полом упругих прокладок без жесткой их связи с несущими конструкциями зданий, установкой вибрирующего оборудования на амортизаторы или специальные изолированные фундаменты. Вибрации, распространяющиеся по коммуникациям (трубопроводам, каналам), ослабляются стыковкой последних через звукопоглощающие материалы (прокладки из резины и пластмассы). Наряду со звукоизоляцией в производственных условиях широко применяются средства звукопоглощения. Для смещений малого объема (400–500 м) рекомендуется общая облицовка стен и перекрытий, снижающая уровень шума на 7–8 дБ.

Уменьшение шума может быть достигнуто за счет рациональной планировки зданий: наиболее шумные помещения должны быть сконцентрированы в глубине территории в одном месте. Они должны быть удалены от помещений для умственного труда и ограждены зоной зеленых насаждений, частично поглощающих шум.

Помимо мер технологического и технического характера широко применяются средства индивидуальной защиты – антифоны, выполняемые в виде наушников или вкладышей. Существует несколько десятков вариантов заглушек-вкладышей, наушников и шлемов, рассчитанных на изоляцию слухового прохода от шумов различного спектрального состава.

Отрицательное действие шумов можно снизить за счет сокращения времени их воздействия, организации рационального режима труда и отдыха, предусматривающего кратковременные перерывы в течение рабочего дня для восстановления функции слуха в тихих помещениях.

2.6. Действие на человека теплоты и лучистой энергии. Запыленность и загазованность производственных помещений. Вентиляция и отопление

Тепловая и лучистая энергия

Внутренняя тепловая и лучистая энергия играют значительную роль в создании микроклиматических условий на рабочих местах и в помещениях.

Теплопередача может происходить путем конвекции, теплопроводности и излучения. Передача тепла осуществляется:

при конвекции – движущейся средой: водой, паром, газом и т. п.;

при теплопроводности – от одной части твердого тела к другим;

при излучении – интенсивными инфракрасными лучами, которые непосредственно не нагревают воздух, но при поглощении которых твердые тела нагреваются.

Чаще всего нагревание (охлаждение) тел происходит посредством всех трех или двух видов теплопередачи.

Для теплообмена при излучении не требуется непосредственного соприкосновения тел, и среда, через которую идут лучи, практически на них не воздействует. Действие тепла при этом сказывается не только на облучаемом участке тела, но и на всем организме. Излучение может вызвать у человека тепловые ожоги всех трех степеней.

Ожоги – очень опасный вид травм, так как они вызывают нарушения различных жизненных функций.

По характеру и интенсивности воздействия на организм человека энергию при излучении подразделяют на три категории:

I – энергия, исходящая от тел, нагретых до 500 °C, с преобладающим тепловым воздействием;

II – энергия, излучаемая телами, нагретыми до 3000 °C, с преобладающим световым воздействием;

III – энергия тел, нагретых более 3000 °C, в которой преобладают ультрафиолетовые лучи, вызывающие заболевание глаз и ожоги.

Для защиты человека от теплового излучения используют различного рода экраны, защитную спецодежду. Радикальное средство защиты – устранение источника излучений. Экраны изготавливают из материалов с высокой отражательной способностью (никелированные, хромированные, полированные, с зеркальными покрытиями) и устанавливают перпендикулярно направлению излучения.

В качестве индивидуальных средств защиты используют очки (одинарные и двойные) со светофильтрами, брезентовые и суконные костюмы, щитки, маски, пасты от действия солнечной радиации.

В статистике несчастных случаев большое место занимают тепловые удары, возникающие под действием прямого воздействия солнечных лучей – солнечный удар (легкая, средняя и тяжелая формы) – и характеризующиеся учащенным пульсом, тошнотой, развивающимся обморочным состоянием. В этих случаях больного необходимо быстро вынести на затененную площадку, освободить от одежды, охладить тело и голову мокрым полотенцем, дать обильное питье; в дальнейшем нужно обратиться к врачу.

Радиоактивное излучение

Несмотря на то, чторабота с радиоактивными веществами и источниками ионизирующих излучений в высших педагогических учебных заведениях ограничена, а в школах запрещена, в некоторых лабораторных работах для студентов по физике, радиотехнике, технологии металлов (гамма-дефектоскопия), рентгеновских установках и в некоторых других случаях они применяются. Это определяет необходимость рассмотрения способов защиты от образующихся при этом вредных факторов.

В зависимости от возможного воздействия их на человека работы с радиоактивными веществами делятся на следующие группы:

работы с открытыми радиоактивными веществами, при которых возможно загрязнение тела и атмосферы;

работы с закрытыми радиоактивными изотопами, когда возможно только внешнее облучение;

работа с материалами, в которых растворены радиоактивные изотопы.

Наиболее тяжелое последствие, вызванное действием ионизирующей радиации, – лучевая болезнь, при которой происходит нарушение функций всех органов и систем. Различают острую форму болезни (однократное облучение в несколько сотен радиан), молниеносную – (результат облучения дозой в несколько тысяч радиан) и хроническую, развивающуюся при длительном облучении организма в малых дозах. Лучевая болезнь возникает только в случае облучения дозами, превышающими допустимые. Поэтому большое значение имеет профилактическая работа.

К работе с радиоактивными веществами не допускаются лица моложе 18 лет и беременные женщины. Работающие с радиоактивными веществами должны проходить периодический инструктаж и медицинское обследование. Все помещения, оборудование, транспорт, приборы, предназначенные для работы и перемещения радиоактивных веществ, имеют знак радиационной опасности – желтый круг, на фоне которого нанесены три красных лепестка и внутренний красный круг. Во всех помещениях, где проводят работы с радиоактивными веществами, должен проводиться дозиметрический контроль с целью заблаговременного предупреждения работающих об опасности. Периодичность и виды дозиметрических измерений устанавливает санитарно-эпидемиологическая станция (СЭС); данные контроля регистрируют в особом журнале. Работающих обеспечивают специальной одеждой (халат, шапочка, обувь, резиновые перчатки). Для защиты органов дыхания необходимо применять специальные респираторы с принудительной подачей чистого воздуха.

Помещения, в которых работают с радиоактивными веществами, размещают отдельно. Их оборудуют специальными мерами защиты и установками контроля. Шкафы, камеры, боксы и другие помещения, где используют радиоактивные вещества, должны иметь вентиляцию и очистные устройства перед выбросом в атмосферу, а также быть удобными для мойки и уборки. Все источники радиации изолируют стационарными и нестационарными защитными устройствами из свинца, свинцового стекла, бетона, стали и т. д. Защитные свойства материалов характеризуются свинцовым эквивалентом – толщиной свинца в миллиметрах, эквивалентной по защите слою данного материала. Для хранения и перевозки радиоизотопов используют ампулохранилища и контейнеры – приборы, в которых защитный экран представляет собой свинцовую заливку, а корпус сделан из чугуна. В рабочее время радиоактивные изотопы размещают в хранилищах, сейфах, оборудованных радиационной защитой и вентиляцией. Запас радиоактивных веществ в лаборатории не должен превышать ожидаемого суточного расхода.

Нормырадиационной безопасности (НРБ) устанавливают предельно допустимую дозу (ПДД) внешнего и внутреннего облучения в зависимости от группы критических органов и категории облучаемых лиц. В любом случае доза, накопленная в возрасте до 30 лет, не должна превышать 12 ПДД.

Запыленность и загазованность производственных помещений

Одним из широко распространенных неблагоприятных факторов, оказывающих негативное влияние на здоровье работников, является производственная пыль. Целый ряд технологических процессов сопровождается образованием мелкораздробленных частиц твердого вещества (пыль), которые попадают в воздух производственных помещений и более или менее длительное время находятся в нем во взвешенном состоянии.

Пылеобразование происходит при дроблении, размоле, перетирке, шлифовке, сверлении, фасовке, упаковке, переработке сельхозпродукции, складской обработке грузов, погрузочно-разгрузочных операциях, транспортировке. Пыль образуется также в результате конденсации паров тяжелых металлов и других веществ.

Большая запыленность воздуха встречается в рудниках, на шахтах, фарфоро-фаянсовом производстве, цементных и литейных заводах, в цехах обработки металла, на оптовых базах, складах сыпучих товаров и сельхозпродуктов.

В последние годы с возрастанием спроса на услуги торговли, банков, предприятий сферы бытовых и других услуг появились крупные учреждения массового обслуживания населения (супер-и гипермаркеты, комбинаты сервисного обслуживания, косметические салоны, выставочные комплексы, залы для обслуживания клиентов финансовых предприятий), в которых движение больших людских и товарных потоков создает повышенное содержание пыли в помещениях.

Производственной пылью называют взвешенные в воздухе, медленно оседающие твердые частицы размерами от нескольких десятков до долей мкм. Многие виды производственной пыли представляют собой аэрозоль, т. е. дисперсную систему, в которой дисперсной средой является воздух, а дисперсной фазой – твердые пылевые частицы.

По размеру частиц (дисперсности) различают видимую пыль размером более 10 мкм, микроскопическую – от 0,25 до 10 мкм и ультрамикроскопическую – менее 0,25 мкм.

Согласно общепринятой классификации все виды производственной пыли подразделяются на органические, неорганические и смешанные. Первые, в свою очередь, делятся на пыль естественного (древесная, хлопковая, льняная, шерстяная и др.) и искусственного (пыль пластмасс, резины, смол и др.) происхождения, а вторые – на металлическую (железная, цинковая, алюминиевая и др.) и минеральную (кварцевая, цементная, асбестовая и др.) пыль. К смешанным видам пыли относят каменноугольную пыль, содержащую частицы угля, кварца и силикатов, а также пыли, образующиеся в химических и других производствах.

Специфика качественного состава пыли предопределяет возможность и характер ее действия на организм человека. Определенное значение имеют форма и консистенция пылевых частиц, которые в значительной мере зависят от природы исходного материала.

Так, длинные и мягкие пылевые частицы легко осаждаются на слизистой оболочке верхних дыхательных путей и могут стать причиной хронических трахеитов и бронхитов. Степень вредного действия пыли зависит также от ее растворимости в тканевых жидкостях организма. Большая растворимость токсической пыли усиливает и ускоряет ее вредное влияние.

Назад Дальше