34. УСТРОЙСТВО И РАБОТА ПЕНТОДА
Основной недостаток тетрода – динатронный эффект – привел к тому, что были разработаны и получили широкое распространение пятиэлектродные лампы, называемые пентодами. В них еще сильнее выражены все положительные свойства тетродов и вместе с тем устранен динатронный эффект.
В пентоде для устранения динатронного эффекта имеется еще одна сетка, расположенная между анодом и экранирующей сеткой. Ее называют защитной сеткой, так как она защищает лампу от возникновения динатронного эффекта. Встречаются также и другие названия этой сетки: антидинатронная, противодинат-ронная, пентодная, третья.
Защитная сетка обычно соединяется с катодом, т. е. имеет нулевой потенциал относительно катода и отрицательный относительно анода. В некоторых случаях на защитную сетку подается небольшое постоянное напряжение. Например, для увеличения полезной мощности генераторные пентоды работают при положительном напряжении на защитной сетке, а для модуляции колебаний путем изменения напряжения защитной сетки на ней устанавливается отрицательное смещение. Однако и в этих случаях потенциал защитной сетки обычно остается гораздо ниже потенциала анода и антидинатронное действие этой сетки примерно такое же, как и при нулевом ее потенциале.
Во многих пентодах соединение защитной сетки с катодом делают внутри лампы, и тогда на этой сетке напряжение всегда равно нулю. Если же имеется вывод защитной сетки, то соединение ее с катодом производят в монтаже схемы.
Роль защитной сетки состоит в том, что между ней и анодом создается электрическое поле, которое тормозит, останавливает и возвращает на анод вторичные электроны, выбитые из анода. Они не могут проникнуть на экранирующую сетку, даже если ее напряжение выше анодного, и динатронный эффект полностью устраняется.
На участке между экранирующей и защитной сетками для электронов, летящих от катода, создается тормозящее поле, и может показаться, что это вызовет уменьшение анодного тока. Однако электроны, получив большую скорость под действием ускоряющего поля экранирующей сетки и пролетев через нее, долетают до защитной сетки и не теряют полностью своей скорости, так как в пространстве между витками этой сетки потенциал не нулевой, а положительный.
Нулевой потенциал имеется на проводниках защитной сетки, а в промежутках между ними потенциал выше нуля, но ниже, чем на аноде. В промежутке анод – экранирующая сетка создается вторичный потенциальный барьер, который не могут преодолеть вторичные электроны, выбитые из анода. Этотбарьер существенно влияет на процесс токораспреде-ления в пентоде.
Пентоды отличаются от тетродов более высоким коэффициентом усиления, достигающим у некоторых пентодов несколько тысяч. Это объясняется тем, что защитная сетка выполняет роль дополнительной экранирующей сетки. Следовательно, в пентоде действие анода по сравнению с действием управляющей сетки еще слабее, нежели в тетроде. Соответственно возрастает и внутреннее сопротивление, которое у некоторых пентодов доходит до миллионов Ом. Проходная емкость становится еще меньше, чем у тетродов. Крутизна пентодов такого же порядка, как у триодов и тетродов, т. е. в пределах 1-50 мА/В.
Пентод можно привести к эквивалентному диоду таким же путем, как это было сделано для тетрода. Проницаемость пентода – весьма малая величина. Следовательно, коэффициент усиления пентода может быть очень большим.
35. ПАРАМЕТРЫ ТЕТРОДОВ И ПЕНТОДОВ
Статические параметры тетродов и пентодов определяются аналогично параметрам триода. Для практического определения параметров берут отношение конечных приращений.
Управляющая сетка в тетродах и пентодах расположена относительно катода так же, как и в триодах. Поэтому крутизна у тетродов и пентодов такого же порядка, как у триодов,т. е. составляет единицы или десятки миллиампер на вольт, хотя некоторое снижение крутизны получается за счет того, что анодный ток всегда меньше катодного тока.
Вследствие того что действие анодного напряжения в тетроде или пентоде ослаблено во много раз, внутреннее сопротивление получается в десятки и сотни раз большим, чем у тетрода, и доходит до сотен килоом.
Внутреннее сопротивление сильно зависит от процесса токораспределения, так как при изменении анодного напряжения анодный ток изменяется за счет этого процесса. Можно считать, что внутреннее сопротивление пентода состоит как бы из двух сопротивлений, соединенных параллельно. Одно из них определяется воздействием поля анода сквозь три сетки на потенциальный барьер у катода, за счет чего происходит очень небольшое изменение анодного тока. Чем гуще сетки, тем это сопротивление больше. Второе сопротивление определяется изменением анодного тока за счет процесса токораспределе-ния и обычно значительно меньше первого сопротивления.
Коэффициент усиления может быть в десятки и сотни тысяч раз большим, чем у триодов, т. е. величина его доходит до сотен и тысяч.
В тетродах и пентодах катодный ток всегда больше анодного, поскольку ток экранирующей сетки всегда существует вместе с анодным током.
Вследствие значительной нелинейной характеристики тетрода и пентода параметры при изменении режима довольно сильно изменяются. При увеличении отрицательного напряжения управляющей сетки, т. е. при уменьшении анодного тока, крутизна уменьшается, а внутреннее сопротивление и коэффициент усиления увеличиваются. Особенностью тетродов и пентодов по сравнению с триодами является сильная зависимость коэффициента усиления от режима.
Если в режиме возврата характеристики переплетаются, то крутизна и коэффициент усиления могут иметь значения, равные нулю и меньше нуля.
С увеличением отрицательного напряжения управляющей сетки анодные характеристики в рабочей области идут более полого и ближе друг к другу, что соответствует увеличению внутреннего сопротивления и уменьшению крутизны.
В некоторых схемах тетрод или пентод используется так, что его триодная часть, состоящая из катода, управляющей сетки и экранирующей сетки, работает в одном каскаде, а вся лампа входит в состав другого каскада.
Крутизна и коэффициент усиления по экранирующей сетке обычно не представляют интереса, так как экранирующая сетка, как правило, не используется в качестве управляющей и напряжение на ней бывает постоянно.
Помимо рассмотренных параметров, имеются и другие, аналогичные тем, какие были указаны для триода. При расчете режимов работы и практическом применении тетродов и пентодов необходимо учитывать предельные значения токов, напряжений и мощностей, в частности важна предельная мощность, выделяемая на экранирующей сетке.
36. УСТРОЙСТВО И РАБОТА ЛУЧЕВОГО ТЕТРОДА
Позднее пентодов были разработаны и получили распространение лучевые тетроды. В них динатрон-ный эффект устранен путем создания для вторичных электронов, выбитых с анода, непреодолимого потенциального барьера, расположенного между экранирующей сеткой и анодом.
Лучевой тетрод по сравнению с обычным тетродом имеет следующие особенности конструкции. Увеличено расстояние между экранирующей сеткой и анодом. Управляющая и экранирующая сетка имеют одинаковое число витков, причем витки их расположены точно друг против друга.
В пространстве между сетками происходит фокусировка электронных потоков. Благодаря этому электроны летят от катода к аноду более плотными пучками – "лучами". Чтобы электроны не летели в направлении держателей сеток, имеются специальные экраны, или лучеобразующие пластины, соединенные с катодом. Кроме того, части поверхности катода, находящиеся против держателей сеток, не покрываются оксидным слоем и поэтому не дают эмиссии.
В лучевом тетроде получаются более плотные электронные потоки, нежели в обычном тетроде. Увеличение плотности тока дает возрастание плотности объемного заряда. Это, в свою очередь, вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в обычном тетроде наблюдается динатронный эффект, а в лучевом тетроде его не будет, так как в промежутке "экранирующая сетка – анод" образуется потенциальный барьер для вторичных электронов.
Вторичные электроны, имеющие относительно не– большие начальные скорости, не могут преодолеть потенциальный барьер и попасть на экранирующую сетку, хотя на последней напряжение выше, чем на аноде. Первичные электроды, имея большие скорости, полученные за счет напряжения экранирующей сетки, преодолевают потенциальный барьер и попадают на анод.
В обычных тетродах экранирующая сетка "разбивает" электронные потоки и перехватывает много электронов. Такое же действие оказывают и держатели сеток. Поэтому в обычных тетродах не получаются достаточно плотные электронные потоки и не создается необходимый потенциальный барьер для вторичных электронов.
Образованию потенциального барьера способствует увеличенное расстояние между экранирующей сеткой и анодом. Чем больше это расстояние, тем больше здесь находится заторможенных электронов, имеющих малые скорости. Именно эти электроны увеличивают объемный отрицательный заряд и понижение потенциала становится более значительным.
Достоинством лучевых тетродов по сравнению с обычными тетродами является также значительно меньший ток экранирующей сетки. Он бесполезен и его уменьшение весьма желательно. В лучевых тетродах электроны летят через просветы экранирующей сетки и почти не перехватываются ею. Поэтому ток экранирующей сетки составляет не более 5–7% анодного тока.
Анодно-сеточные характеристики лучевых тетродов такие же, как у обычных тетродов или пентодов.
В мощных каскадах усиления низкой и высокой частоты лучевые тетроды с успехом заменяют пентоды. Для получения улучшенных характеристик выпускают лучевые пентоды. У них сетки подобны сеткам лучевого тетрода, и электроны летят к аноду лучами через просветы защитной сетки. Поэтому у лучевых пентодов ток экранирующей сетки значительно меньше, чем у обычных пентодов.
37. ПРИНЦИП ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ
Преобразованием частоты является любое ее изменение. Например, при выпрямлении переменный ток с частотой превращается в постоянный ток, у которого частота равна нулю. В генераторах энергия постоянного тока, имеющего частоту, равную нулю, преобразуется в энергию переменного тока нужной частоты.
Вспомогательное напряжение получают от маломощного генератора, называемого гетеродином. На выходе преобразователя получается колебание с новой преобразованной частотой, которую называют промежуточной частотой.
В качестве преобразователя частоты должен применяться нелинейный или параметрический прибор.
Если бы преобразователь частоты был линейным прибором, то в нем бы произошло бы просто сложение двух колебаний. Например, при сложении двух колебаний с близкими, но не кратными частотами получились бы биения, т. е. сложное колебание, у которого частота менялась бы в некоторых пределах около среднего значения, а амплитуда изменялась бы с частотой, равной разности частот. Такие биения не содержат составляющего колебания с новой частотой. Но если биения детектировать (выпрямить), то вследствие нелинейности этого процесса возникает составляющая с промежуточной частотой.
На выходе преобразователя частоты получается сложное колебание, имеющее составляющие многих частот.
Все новые частоты, представляющие собой комбинации частот и их гармоник, называются комбинационными частотами. Выбирая подходящую вспомогательную частоту, можно получить новую частоту.!
Среди новых частот содержатся и гармоники первоначальных колебаний с частотами в несколько раз больше исходных. Но их можно получить проще при нелинейном искажении одного из подводимых напряжений. Наличие двух напряжений для возникновения гармоник необязательно.
Как правило, амплитуды комбинационных колебаний (и гармоник) тем меньше, чем выше значения частот. Поэтому в большинстве случаев в качестве колебания новой промежуточной частоты используют колебание разностной частоты, а иногда суммарной. Комбинационные частоты более высокого порядка применяются редко.
Преобразование частоты в радиоприемниках в большинстве случаев осуществляется так, что при приеме сигналов различных радиостанций, работающих на разных частотах, создаются колебания одной и той же промежуточной частоты. Это позволяет получить большое усиление и высокую избирательность, причем они остаются почти постоянными во всем диапазоне частот принимаемых сигналов. Кроме того, при постоянной промежуточной частоте получается более устойчивая работа усилительных каскадов и они значительно проще по устройству, нежели каскады, рассчитанные на диапазон частот.
В радиоприемных и радиоизмерительных устройствах в качестве промежуточной чаще всего используется разностная частота, причем вспомогательная частота обычно выше преобразуемой частоты сигнала. Такое соотношение между частотами обязательно, если промежуточная частота должна быть выше частоты сигнала.
38. ЛАМПЫ ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ
Для преобразования частоты применяют различные нелинейные или параметрические приборы. Например, в приемниках для дециметровых и сантиметровых волн в преобразователях частоты работают вакуумные или полупроводниковые диоды. Триоды используют для преобразования частоты вдиапазонахдециметровых и метровых волн.
Преобразование осуществляется следующим образом. К лампе подводят напряжение с частотами сигнала и вспомогательной частоты. Тогда анодный ток лампы пульсирует одновременно с этими частотами. Вследствие того что лампа является нелинейной, или параметрическим прибором, в ее анодном токе появляются составляющие с комбинационными частотами. На одну из них, обычно на разностную, настроен анодный колебательный контур. Он имеет большое сопротивление только для тока резонансной частоты и на нем получается усиленное напряжение только с промежуточной частотой. Таким образом, контур выделяет колебания промежуточной частоты.
В схемах преобразовательной частоты необходимо по возможности устранить связь между цепями приходящих сигналов и цепями гетеродина. Обычно в тех и других имеются колебательные контуры. При наличии связи между ними наблюдается влияние одного контура на другой, нарушение правильной их настройки, ухудшение стабильности частоты гетеродина и при отсутствии усилителя высокой частоты паразитное излучение колебаний гетеродина и при отсутствии усилителя высокой частоты паразитное излучение колебаний гетеродина через антенну приемника.
При использовании триода напряжения сигнала и гетеродина подаются в цепь сетки и это приводит к значительной связи между цепями сигнала и гетеродина. Подобный метод преобразования частоты называется односеточным.
Ослабление связи между цепями сигнала и гетеродина достигается при двухсеточном преобразовании частоты, которое можно осуществить с помощью пентода, если использовать его в качестве лампы с двойным управлением. В этом случае сложение колебаний сигнала и гетеродина происходит в электронном потоке внутри лампы вследствие того, что колебания поданы на различные сетки. Напряжение сигнала подводится к управляющей сетке, а напряжение гетеродина – к защитной сетке, которая используется как вторая управляющая. Если напряжение этой сетки остается значительно ниже минимального напряжения анода, то она по-прежнему работает и как защитная сетка. Экранирующая сетка почти полностью устраняет паразитную емкостную связь между цепями сигнала и гетеродина.
Лампу, в которой осуществляется преобразование частоты, иногда называют смесительной, так как в ней происходят сложения двух колебаний с различными частотами, а каскад, в котором работает эта лампа, называют смесителем. Таким образом, преобразование частоты состоит из смесителя и гетеродина, в каждом из которых должна работать своя лампа.
Многоэлектродные лампы с двойным управлением для преобразования частоты – гептоды – имеют две управляющие сетки и работают одновременно в смесителе и гетеродине, т. е. заменяют две лампы, они используются в приемниках средних и коротких волн, но на УКВ работают плохо.
Гептод имеет пять сеток. Достоинством гептодов является наличие защитной сетки, благодаря которой увеличивается внутреннее сопротивление лампы.
При работе гептодов на волнах короче 20 м стабильность частоты гетеродина оказывается недостаточной и приходится применять гетеродин с отдельной лампой, т. е. использовать гептод только в качестве смесительной, а не преобразовательной лампы. На этих волнах лучшие результаты в преобразователях частоты дают пентоды и триоды.
39. ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ ЛАМП С ДВОЙНЫМ УПРАВЛЕНИЕМ
Все многосеточные лампы с двойным управлением имеют экранирующую сетку и подобны пентодам или тетродам, в которые добавлены еще сетки, образующие триодную (гетеродинную) часть. По своим характеристикам и параметрам эти лампы аналогичны пентодам и тетродам, а по характеристикам и параметрам триодной части – обычным триодам. Кроме того, лампы с двойным управлением имеют дополнительные характеристики и параметры, обусловленные наличием двух управляющих сеток.
Ток анода растет при изменении в положительную сторону напряжений обеих сеток. Крутизна по первой сетке тем больше, чем выше напряжение сетки. Если напряжение изменяется в положительную сторону, то понижается потенциальный барьер у катода и все большее количество электродов преодолевает этот барьер. Соответственно растут катодный ток, анодный ток и ток экранирующей сетки.
При изменении напряжения происходит изменение токораспределения между анодом и сеткой подобное тому, которое наблюдается в пентоде при изменении напряжения его защитной сетки.
Двойное управление анодным током сводится к тому, что изменение напряжения одной управляющей сетки изменяет крутизну характеристики по другой управляющей сетке. Вследствие изменения крутизны – основного параметра, характеризующего управляющее действие сетки, под влиянием напряжения другой управляющей сетки лампа является параметрическим прибором, пригодным для преобразования частоты.
Процесс преобразования частоты в лампе с двойным управлением можно пояснить с помощью семейства характеристик гептода. Так как анодный колебательный контур настроен на промежуточную частоту и на частотах сигнала и гетеродина имеет малое сопротивление, то для колебаний этих частот лампа практически работает в режиме без нагрузки и изменения анодного тока определяются из статических характеристик.
Важнейшим параметром, характеризующим часто-топреобразовательные лампы, является крутизна преобразования. Она представляет собой отношение амплитуды первой гармоники переменной составляющей промежуточной частоты, полученной в анодном токе, к амплитуде напряжения сигнала. При этом напряжения на экранирующих и защитной сетках и аноде постоянны.
Крутизна преобразования растет с увеличением амплитуды напряжения гетеродина.
Многие частотопреобразовательные лампы имеют удлиненные характеристики для осуществления автоматической регулировки усиления преобразовательного каскада. Но тогда при приеме сильных сигналов, т. е. при смещении рабочей точки на нижние нелинейные участки характеристики, резко возрастают амплитуды комбинационных колебаний, которые могут быть причинами помех в приемнике.