Все идет по плану, пока вы не достигаете орбиты длиной в 55 миллионов километров - равной как раз трем окружностям горизонта. Тогда капсула вместо плавного спуска по спирали вдруг делает самоубийственный рывок к горизонту. В панике вы разворачиваете капсулу и с большим трудом выходите на более высокую орбиту, чуть большую 55 миллионов километров.
- Что случилось, черт побери!? - запрашиваете вы ЗАРЮ по лазерной связи.
- Тише, тише! - успокаивает она, - Вы рассчитали орбиту, используя описание законов гравитации Ньютона. Но ньютоновское описание - только приближение к настоящим законам гравитации, которые управляют Вселенной. Это приближение прекрасно действует вдали от горизонта, но плохо поблизости от него. Гораздо более точным является описание Эйнштейна на основе общей теории относительности, которое с огромной точностью согласуется с истинными законами гравитации вблизи горизонта и предсказывает, что около него гравитационное тяготение становится сильнее, чем по закону Ньютона. Чтобы оставаться на круговой орбите, на которой усиленная гравитация уравновешивается центробежной силой, вы должны увеличить вашу центробежную силу, а это означает, что должна увеличиться ваша орбитальная скорость вокруг дыры. После прохождения орбиты в три окружности горизонта, вы должны перевернуть капсулу и не тормозить, а ускорять вращение. Потому после
Глава 2.
пересечения тройной орбиты гравитация пересилила вашу центробежную силу и швырнула вас к центру.
"Будь проклята эта ЗАРЯ!" - ругаетесь вы про себя. "Она всегда отвечает на мои вопросы, но никогда не сообщит о критической ситуации заранее. Она никогда не предупредит меня, когда я собираюсь действовать неверно!" Вы знаете, конечно, причину. Человеческая жизнь потеряла бы свою "изюминку" и разнообразие, если бы компьютерам разрешалось предостерегать от совершения ошибок. В 2032 г. Всемирный Совет принял закон об обязательной установке во все компьютеры блока Гобсона, запрещающего такие предупреждения, вы разворачиваете капсулу и начинаете осторожно чередовать: ускорение, снижение по спирали, свободный дрейф, ускорение, снижение по спирали, дрейф, ускорение, снижение, дрейф..., что приводит к уменьшению окружности орбиты с трех окружностей горизонта до 2,5; 2,0; 1,6; 1,55; 1,51; 1,505; 1,501; ...
Какое разочарование! Чем больше раз вы разгоняетесь и чем быстрее ваше результирующее движение по круговой орбите, тем меньше становится ваша орбита; но когда скорость дрейфа приближается к скорости света, орбита приближается к окружности, равной 1,5 окружности горизонта. Поскольку вы не можете двигаться быстрее света, нет никакой надежды, что этим способом можно подойти ближе к горизонту.
Вы опять обращаетесь к ЗАРЕ за помощью, и она в очередной раз успокаивает вас и объясняет: внутри окружности в 1,5 горизонта вообще нет круговых орбит. Гравитационное тяготение там такое сильное, что его не может уравновесить никакая центробежная сила, даже если это вращение со скоростью света. Если вы хотите подойти ближе, говорит ЗАРЯ, вы должны сойти с круговой орбиты и начать падать на горизонт, притормаживая, чтобы предотвратить катастрофическое падение. Сила двигателей вашей капсулы будет компенсировать силы гравитации дыры, пока вы будете медленно спускаться и затем висеть над горизонтом, как астронавты с помощью ракетных двигателей парили над поверхностью Луны.
Теперь, узнав о некоторых предосторожностях, вы спрашиваете ЗАРЮ совета по поводу последствий такой сильной тяги ракетных двигателей. Вы объясняете, что вы хотите парить на такой высоте, которая соответствует 1,0001 окружности горизонта, где проявляется большинство эффектов, наблюдаемых на горизонте, но откуда вы можете потом уйти. Если я буду поддерживать там капсулу двигателями с постоянной тягой, какой величине ускорения она будет соответствовать? "150 миллионов земных ускорений", - мягко отвечает ЗАРЯ.
С чувством глубокого разочарования вы разгоняетесь и по спирали уходите в люк вашего звездного корабля.
После долгого сна и последующего пятичасового расчета по формулам общей теории относительности применительно к черным дырам, трехчасового штудирования Атласа черных дыр Шехтера и часовой консультации с командой вы формулируете план следующей части путешествия.
Потом команда передаст Всемирному географическому обществу, оптимистически предполагая, что оно все еще существует, отчет о ваших экспериментах со Стрельцом. В конце сообщения излагается ваш новый план.
Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удерживания ее на окружности в 1,0001 горизонта. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов (15х10) солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 (10) световых лет от нашей галактики (Млечный Путь) и в 100 миллионах (10) световых лет от кластера галактик Девы, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах (2х10) световых лет от Млечного Пути, что составляет 10% расстояния до края наблюдаемой части Вселенной.
План, который передала ваша команда, состоит в путешествии к Гаргантюа. При использовании обычного ускорения в 1 g в первой половине пути и такого же замедления для второй половины ваше путешествие займет 2 миллиарда лет по земному времени, но благодаря зависящему от скорости сокращению времени только 42 года по часам звездолета. Если члены Всемирного географического общества не хотят 4 миллиарда лет находиться в состоянии глубокого анабиоза (2 миллиарда лет уйдет на достижение вашим звездолетом окрестностей Гаргантюа и 2 миллиарда на то, чтобы сообщение от него достигло Земли), они не смогут получить ваше следующее сообщение.
Гаргантюа
Через сорок два года по часам звездолета вы замедляетесь в окрестности Гаргантюа. Над вашей головой висит квазар 3C273 с двумя бьющими из центра блестящими голубыми струями; под ним находится черная бездна - Гаргантюа. Выйдя на орбиту вокруг
Глава 9.
Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитываете, что это дыра, окрестность которой вы сможете исследовать, испытывая допустимые приливные силы и ускорения! Вы настолько уверены в безопасности, что решаете опустить к горизонту вместо капсулы весь звездолет.
Однако прежде чем начать спуск, вы приказываете команде сделать фотографии гигантского квазара над вами, триллионов звезд, окружающих Гаргантюа, и миллиардов галактик, мерцающих на небе. Они также фотографируют черный диск Гаргантюа под вами, который по размеру примерно соответствует диску Солнца на Земле. На первый взгляд, кажется, что он загораживает свет всех звезд и галактик, расположенных позади. Но приглядевшись, вы обнаруживаете, что гравитационное поле дыры действует как линза, отклоняя свет звезд и галактик вблизи края горизонта и фокусируя его в тонкое яркое кольцо по краю черного диска. На этом кольце вы видите несколько изображений от каждой загороженной звезды: одно изображение образуется световыми лучами, которые отклонились вблизи левого края дыры, другое - лучами, отклоненными от правого края, третье - лучами, которые, прежде чем направиться в вашу сторону, сделали полный оборот вокруг дыры, четвертое - лучами, которые дважды обежали дыру, и т.д. В результате получилась очень сложная кольцеобразная структура, которую сфотографировала для детального будущего изучения ваша команда.
Фотографирование закончено, вы приказываете Карес начать спуск звездолета. Но вам придется набраться терпения: дыра настолько велика, что спуск с последовательными ускорениями и замедлениями с 1 g для достижения цели - орбиты в 1,0001 окружности горизонта, потребует 13 лет по времени звездолета.
Пока происходит спуск, команда регистрирует с помощью аппаратуры изменения неба вокруг звездолета. Наиболее заметное изменение - постепенное увеличение диска черной дыры под кораблем. Вы ожидаете, что он перестанет расти, когда закроет все небо под вами как черный пол, а небо над вами остается таким же ясным, как на Земле. Но нет - черный диск продолжает расти, заворачиваясь по сторонам вашего звездолета, и закрывает постепенное все пространство за исключением яркого круглого отверстия сверху, через которое
Глава 8.
видна окружающая Вселенная (рис. П.4). Это происходит так, как будто вы попали в пещеру и удаляетесь все дальше и дальше от входа, который кажется все меньшим и меньшим светлым пятном.
В нарастающей панике вы просите помощи у "ЗАРИ":
- Неужели Карес ошиблась при расчете траектории? Мы что, прошли через горизонт? Мы обречены?
- Тише, тише! - успокаивает она. - Мы в безопасности, мы все еще выше горизонта. Темнота закрыла большую часть неба только из-за мощного эффекта линзы, обусловленного гравитацией дыры. Посмотри туда, где мой указатель, почти точно над вами - там находится галактика ЗС295. Прежде чем вы начали опускаться, она была в горизонтальном положении, 90° от зенита. Но теперь, вблизи горизонта Гаргантюа, гравитация дыры настолько сильно воздействует на почти горизонтальные лучи света, идущие от ЗС295, что они, изгибаясь, превращаются в почти вертикальные. В результате кажется, что ЗС295 находится вверху.
Теперь вы продолжаете спуск более уверенно. На мониторе показывается пройденное звездолетом по направлению к центру дыры
расстояние и длина окружности вашей орбиты вокруг дыры. На ранних стадиях спуска на каждый километр пройденного радиуса длина окружности уменьшалась на 6,283185307... километров. Отношение уменьшения длины окружности к уменьшению радиуса было равно точно2π , как и предсказывает стандартная формула Евклида для окружностей. Но теперь, когда ваш корабль приближается к горизонту, отношение уменьшения радиуса становится много меньше, чем 2π: 5,960752960 для 10 окружностей горизонта; 4,442882938 для 2 окружностей; 1,894451650 для 1,1 окружности горизонта; 0,625200306 для 1,01 окружности. Такие отклонения от евклидовой геометрии, изучаемой в школе, возможны только в искривленном пространстве - вы видите кривизну пространства, которая предсказана общей теорией относительности Эйнштейна и которая должна сопровождать приливные силы дыры. На конечной стадии спуска звездолета, чтобы замедлить его падение, Карес еще усиливает тягу двигателей. Наконец, корабль зависает на длине окружности в 1,0001 горизонта, используя 10 g ускорение для противостояния мощной гравитационной тяге дыры. На последнем километре радиального спуска длина окружности уменьшилась всего на 0,062828712 километра.
Еле ворочая руками, преодолевая болезненное 10 g ускорение, команда разворачивает телескопические камеры и начинает долгое и детальное фотографирование. За исключением слабого излучения вокруг, вызванного столкновениями атомов падающего газа, единственными электромагнитными волнами, которые можно сфотографировать, являются те, что приходят из яркого пятна над вами. Пятно уменьшилось всего до 3 градуса в диаметре, что в 6 раз больше диаметра диска Солнца, каким мы его видим на Земле. Но в это пятно стянуто изображение всех звезд, которые вращаются вокруг Гаргантюа и всех галактик Вселенной. Точно в центре находятся галактики, которые действительно находятся прямо над вами. На расстоянии в пятьдесят пять процентов от центра пятна до его края находятся изображения галактик, которые, как ЗС295, если бы не эффект линзы, были бы видны на горизонте, в 90° от зенита. На расстоянии в 35 процентов до края пятна находятся изображения галактик, которые, как вы знаете, в действительности находятся на противоположной стороне дыры, прямо под вами. В 30 процентах от края пятна находится второе изображение каждой галактики, а еще в 2 процентах от края - третье!
Также необычно то, что цвета всех звезд и галактик кажутся неправильными. Галактика, о которой вы точно знаете, что она имеет
Главы 2 и 3.
ПРОЛОГ зеленый цвет, светится теперь в мягком рентгеновском диапазоне: гравитация Гаргантюа, направляя к вам излучение галактики, делает его более высокоэнергетичным, уменьшая длину волны с 5х10 метра (зеленый) до 5х10 метра (рентгеновские лучи). Подобным же образом внешний диск квазара 3C273, который как вы знаете, излучает инфракрасный свет с длиной волны 5х10 метра, выглядит теперь зеленым с длиной волны 5х10 метра.
После тщательной регистрации всех особенностей пятна, вы обращаете внимание на свой звездолет. Вы подозреваете, что здесь, так близко к горизонту дыры, законы физики будут как-то изменяться, и эти изменения могут влиять и на вашу физиологию. Но нет. Вы смотрите на вашего первого помощника, Карес - она выглядит нормально. Второй помощник Брет тоже в норме. Вы дотрагиваетесь до них и не чувствуете изменений. Вы пьете стакан воды и, если не считать эффектов, связанных с большим десятикратным ускорением свободного падения, вода проходит нормально. Карес включает аргоновый лазер, появляется, как обычно, зеленый луч. Брет посылает импульсы рубинового лазера и измеряет время, которое требуется световому импульсу для прохождения пути от лазера до зеркала и обратно. Из этих измерений он вычисляет скорость света. Результат в точности такой же, что и в лаборатории на Земле: 299792 километров в секунду.
На звездолете все в порядке, все абсолютно так же, как если бы корабль покоился на поверхности массивной планеты с гравитацией в 10 g. Если бы не причудливое пятно прямо над вами и все поглощающая пустота вокруг, вы бы не узнали, что находитесь очень близко к горизонту черной дыры, а не в безопасности на поверхности планеты. Ну, или почти не узнали. Дыра искривляет пространство-время внутри вашего звездолета так же, как и снаружи, и с помощью достаточно точных измерений вы можете определить эту кривизну, например, измерить силу приливного растяжения между вашей головой и ногами. Но поскольку кривизна исключительно важна в масштабе горизонта длиной в 300 триллионов километров, ее влияние в масштабе вашего однокилометрового звездолета ничтожно. Приливная сила, порождаемая кривизной, между верхом и низом звездолета равна одной сотой от триллионной части земной гравитации (10 g), а между головой и ногами еще в тысячу раз ее меньше!
Чтобы продолжить изучение этого замечательно нормального состояния, Брет выпускает из корабля капсулу с аппаратурой для измерения скорости света, состоящей из импульсного лазера и зеркала. Пока капсула движется к горизонту, этот прибор измеряет скорость, с которой световые импульсы проходят от лазера в носовой части капсулы до ее хвостовой части и обратно. Компьютер в капсуле передает по лазерному лучу на корабль: "299792 километров в секунду; 299792, 299792, 299792...". Цвет входящего лазерного пучка смещается от зеленого к красному, затем к инфракрасному, потом к микроволнам и радиоволнам, по мере того как капсула приближается к горизонту, а сообщение по-прежнему то же самое: "299792, 299792, 299792...". Затем лазерный луч исчезает. Капсула прошла горизонт, но ни разу за время падения не наблюдалось никаких изменений в скорости света внутри ее, не было также никаких изменений в законах физики, которые управляют работой электронных систем капсулы.
Эти экспериментальные результаты приносят вам большое удовлетворение. В начале XX века Альберт Эйнштейн провозгласил, исходя, в основном, из философских соображений, что локальные законы физики (законы в малых пространствах, там где можно пренебречь искривлением пространства-времени) должны быть те же самые, что и в остальной Вселенной. Это утверждение является фундаментальным принципом физики - принципом эквивалентности. В последующие столетия принцип эквивалентности часто подвергался экспериментальной проверке, но никогда ранее его не проверяли так основательно, как в ваших экспериментах здесь, вблизи горизонта Гаргантюа.
Вы и ваша команда устали от борьбы с 10-кратной гравитацией и начинаете подготовку к заключительной части путешествия, возвращению к нашей галактике, к Млечному Пути. Команда, конечно, пошлет отчет о ваших исследованиях Гаргантюа в начале обратного пути, но, поскольку звездолет сам будет двигаться почти со скоростью света, сообщение достигнет Млечного Пути, обогнав корабль менее чем на год по часам Земли.
Пока ваш звездолет уходит от Гаргантюа, команда проделывает аккуратные телескопические исследования квазара 3C273, расположенного над вами (рис. П.5). Его струи - тонкие всплески горячего газа, вырывающиеся из ядра квазара, - огромны: 3 миллиона световых лет длиной. Наведя телескопы на ядро, команда видит источник мощи этих струй: плотный, горячий бублик из газа размером менее, чем в один световой год, с черной дырой в центре. Бублик, который астрофизики называют "диск аккреции", вращается вокруг черной звезды. Измеряя период его вращения, вы получаете массу дыры: