Логика. Учебное пособие - Гусев Дмитрий Алексеевич 22 стр.


20. Установите, какой из основных законов логики – тождества, противоречия, исключенного третьего, достаточного основания, – нарушен в следующих примерах.

а) – Почему вы называете этот хор смешанным? Ведь здесь одни женщины.

– Да, но одни умеют петь, а другие – нет.

б) Когда Фарадей обратился к Дэви с просьбой принять его на работу в лабораторию, тот спросил совета у одного из руководителей Королевского института. "Поручи ему, – был ответ, – мыть лабораторную посуду. Если он к чему-нибудь способен, то обязательно согласится; если же не согласится, значит не способен ни к чему".

в) "Бабин вынул трубку изо рта. Смеясь одними глазами, спросил:

– Обожди, Маклецов, ты "Лес" читал?

– Я за войну ни одной книги не прочел, – сказал Маклецов с достоинством.

– Ну это тебе полагалось еще до войны прочесть.

– А раз полагалось, значит, прочел.

– Все-таки: читал или не читал?

– Да что вы навалились, товарищ комбат, всякую инициативу сковываете! Лес. Я в сорок первом в окружении в таких лесах воевал, какие тому Островскому сроду не снились…"

(Г. Бакланов "Военные повести")

г) "Маловысокохудожественное произведение"

(М. М. Зощенко).

д) Желая узнать, имеет ли воздух вес, Аристотель надул им бычий пузырь и взвесил его. Потом выпустил из него воздух и снова взвесил. Вес в обоих случаях оказался одинаковым. Из этого философ сделал вывод, что воздух невесом.

е) "Религия повергает человечество на колени перед существом, не обладающим протяженностью и, вместе с тем, бесконечным и все наполняющим своей безмерностью; перед существом всемогущим и никогда не выполняющим своих желаний; перед существом бесконечно добрым и возбуждающим одно недовольство; перед существом, стремящимся к гармонии и всюду сеющим раздоры и беспорядок"

(П. Гольбах).

ж) Алиса встречает Белого Короля. Он говорит:

– Взгляни-ка на дорогу! Кого ты там видишь?

– Никого, – сказала Алиса.

– Мне бы такое зрение! – заметил Король с завистью. – Увидеть Никого! Да еще на таком расстоянии!

(Л. Кэролл "Алиса в Зазеркалье")

з) Девка с полными ведрами – к добру; пустые ведра – к худу.

и) Учащийся спрашивает учителя: "Можно ли ругать или наказывать человека за то, что он не сделал?" "Нельзя, конечно же", – отвечает учитель. "В таком случае не ругайте и не наказывайте меня, – говорит учащийся, – я не сделал сегодня домашнее задание".

к) – Дай мне одну из твоих собак.

– Какую?

– Черную.

– Черная мне милее белой!

– Тогда дай белую.

– А белая мне милее обеих!

л) – А что, отец, – спросил молодой человек, затянувшись, – невесты у вас в городе есть?

– Кому и кобыла невеста, – ответил старик, охотно ввязываясь в разговор.

(И. Ильф, Е. Петров "Двенадцать стульев)

м) Вот я к Вам приехал в среду,

Но уж больше не приеду;

Ведь попал я на беду

В очень скучную среду.

И могу сказать Вам смело:

Всех гостей "среда заела!"

(Н. Врангель)

н) – Прекрасно! – промолвил Рудин. – Стало быть, по-вашему, убеждений нет?

– Нет и не существует.

– Это ваше убеждение?

– Да.

– Как же вы говорите, что их нет? Вот вам уже одно, на первый случай.

(И. С. Тургенев "Рудин") о) Однажды вечером мэр города столкнулся на улице с горожанином. После этого он издал приказ, чтобы никто не выходил вечером на улицу без фонаря. Однако, вскоре мэр опять столкнулся с тем же горожанином.

– Вы не читали моего приказа? – спросил мэр сердито.

– Читал, – ответил прохожий. – Вот мой фонарь.

– Но в фонаре у вас ничего нет!

– В приказе об этом ничего не говорится.

Наутро появился приказ, обязывающий горожан выходить вечером на улицу только со свечой в фонаре. Вечером мэр снова натолкнулся на того же горожанина.

– Где фонарь?! – закричал мэр.

– Вот он, и в нем – свеча.

– Но она не зажжена!

– В приказе не сказано, что свечу надо зажигать.

Мэру пришлось издавать еще один приказ.

п) Один торговец оружием в Древнем Китае так рекламировал свои товары: "Ничто не может пробить мои щиты" и "Мои стрелы пробивают все, что угодно".

р) "Однажды прислуга сообщила мне, что в новолуние на чердаке появляется какая-то белая фигура, пугающая всех своим зловещим видом.

– Вздор, – улыбаясь, сказал я. – Почему именно в новолуние? Если она является, то может явиться когда угодно.

Но прислуга стояла на своем.

– Хорошо, – сказал я. – Я проверю это. Теперь как раз не новолуние, и я посмотрю – явится ли твое привидение?

В ту же ночь я, с замирающим сердцем и не слушая уверений прислуги, что раз нет новолуния, не будет и привидения, отправился на чердак.

Рано утром, бледный, с перекошенным от ужаса лицом, я еле сполз с чердака вниз. На все вопросы меня только и хватило пролепетать:

– Прислуга была права… Новолуния не было, привидение не появилось. Ясно, что в новолуние, значит, оно является.

(А. Аверченко "По ту сторону…")

с) Один товарищ сказал другому:

– Купи сто апельсинов, я один съем.

– Не съешь!

– Съем!

– Давай поспорим.

– Давай.

Они поспорили, один из них купил сто апельсинов, а другой взял один апельсин и съел.

– А остальные! – возмутился тот, который купил апельсины.

– Что остальные? – непонимающе спросил другой. – Ешь остальные!

– С какой стати? Я же сказал: я один съем, так вот я взял один апельсин и съел.

т) В XVI в. профессор Лувенского университета Фруадмон выступил против Коперника. "Земля, – говорил он, – не может быть планетой, не может обращаться вокруг Солнца, ибо в центре Земли расположен ад, а последний должен быть как можно дальше от неба. Следовательно, Земля находится в центре небесного пространства".

(Ф. Кымпан "История числа П). у) Миллионы лет вторая планета от Солнца – Венера, – окутавшись облаками, прятала от любопытных глаз человечества тысячи неведомых загадок…

ф) "Патер Кристофоро был очень умен.

– Скажите мне, преподобный отец, – спросил я однажды… – судя по всему учение Христово не сумело почти за два тысячелетия превратить человека в ангела!..

– Умный ты задал мне вопрос… Да, это правда! Но я скажу тебе кое-что другое. Посмотри на себя. Вода существует на свете, пожалуй, несколько миллионов лет, а у тебя все еще грязная шея! – И он ткнул в меня пальцем.

Я онемел от удивления, услышав столь простую истину…"

(Г. Морцинек "Семь удивительных историй Иооахима Рыбки)

х) – А скажи мне, Сеня, – вкрадчиво произнес дотошный господин, – был ни минувшей ночью у мамзель Ванды генерал с офицерами?

Сеня шмыгнул носом, похлопал белесыми ресницами и переспросил:

– Ночью? Енарал?

– Да-да, енарал, – закивал филер.

– Тута? – Мальчик наморщил лоб.

– Тут, тут, где же еще!

– А рази енаралы по ночам ездеют? – недоверчиво поинтересовался Сенька.

– Почему же нет?

Мальчик с глубоким убеждением ответил:

– Енарал, он ночью спит. На то он и енарал.

(Б. Акунин "Смерть Ахиллеса")

21. Что такое софизмы? Чем они отличаются от паралогизмов? Когда, где и в связи с чем появились софизмы? В чем заключается основное разногласие между софистами и Сократом в вопросе об истине? Какие аргументы можно привести в пользу того, что полемика между ними, начавшаяся приблизительно 2 500 лет назад, продолжается до настоящего времени?

22. Каким образом строятся софизмы? В чем они сходны между собой и чем отличаются друг от друга? Найдите в литературе или придумайте по одному примеру для несложного софизма, логическая ошибка которого лежит на поверхности, и трудноразрешимого софизма, в котором подвох хорошо замаскирован.

23. Что такое логические парадоксы? Чем они отличаются от софизмов? Где и когда был открыт парадокс "лжеца"? Что он собой представляет? Почему его часто называют "королем логических парадоксов"? Кто и когда обнаружил парадокс "деревенского парикмахера"? Какая ситуация в нем описывается, и к какому удивительному выводу приводит ее анализ?

24. В чем сходство парадоксов "лжеца" и "деревенского парикмахера"? Что такое антиномии? Как соотносятся понятия "логический парадокс" и "антиномия"? Какая ситуация описывается в парадоксе "Протагор и Эватл"? Чем он отличается от парадоксов "лжеца" и "деревенского парикмахера"? Каковы, с вашей точки зрения, причины появления логических парадоксов? Существуют ли общепризнанные способы их преодоления? Какую роль играют парадоксы в логике?

25. Что такое апории? Каким образом показывается противоречие между видимым и мыслимым в апориях Зенона Элейского "Дихотомия" и "Ахиллес и черепаха"? Отталкиваясь от своих знаний или жизненного опыта, попытайтесь сформулировать какое-нибудь рассуждение, которое было бы апорией.

Глава 5
Доказательство

Дмитрий Гусев - Логика. Учебное пособие

5.1. Что такое доказательство?

Знание о логических законах и ошибках, связанных с их нарушениями, особенно важно для правильного построения доказательства, которое представляет собой совокупность приемов подтверждения или опровержения чего-либо (тезиса, утверждения, идеи, мысли и т. п.) называется доказательством. Обратим внимание на то, что и подтвердить, и опровергнуть – означает доказать. В повседневной жизни понятия подтверждение и доказательство часто употребляются в качестве равнозначных, а соответствующие термины воспринимаются как синонимы, что не совсем верно: подтверждение – это разновидность доказательства, наряду с опровержением. Подтвердить – это значит доказать истинность какого-либо высказывания, а опровергнуть – доказать ложность некого суждения (положения, утверждения, тезиса).

Все доказательства делятся на непосредственные и опосредованные. В непосредственном доказательстве некое высказывание подтверждается или опровергается путем соотнесения его с действительностью. Например, для того, чтобы установить истинным или ложным является утверждение: Сейчас на улице идет дождь достаточно соотнести его с действительностью, т. е. просто выглянуть в окно. Точно так же для определения инстинности или ложности суждения: Это тело тяжелее данной жидкости надо всего лишь погрузить тело в жидкость и посмотреть, что произойдет: утонет оно в ней или нет. Непосредственные доказательства также часто называют эмпирическими (от греч. еmреiria – опыт), т. е. базирующимися на опыте. В данном случае термин "опыт" надо понимать не в узком смысле (например, опыты по физике, опыты по химии и т. п.), а в широком: опыт – это все то, с чем мы соприкасаемся в жизни с помощью органов чувств (т. е. видим, слышим, осязаем, и т. д.).

Далеко не все можно доказать эмпирически, т. е. с помощью ссылки на опыт. Например, для эмпирического доказательства утверждения о том, что сумма внутренних углов любого треугольника равна 180, надо начертить треугольник, измерить транспортиром его углы и сложить их величины. Получится 180. Но ведь этот результат характеризует именно данный, только что начерченный треугольник. Вдруг у другого треугольника сумма внутренних углов не будет равна 180. Для того чтобы выяснить это, построим другой треугольник, измерим транспортиром его углы и сложим их величины. Опять получится 180º. Однако, может оказаться, что у третьего треугольника сумма внутренних углов будет отличаться от 180º. Начертим третий треугольник и измерим его углы… Таким образом, чтобы доказать эмпирически утверждение об одной и той же сумме внутренних углов любого треугольника, надо построить все возможные треугольники, измерить и сложить величины углов в каждом из них. Сделать это, конечно же, никто не сможет, ведь множество всех треугольников бесконечно. Как видим, в данном случае непосредственное, или эмпирическое доказательство неприменимо.

Каким же образом доказывается положение о сумме внутренних углов любого треугольника? Из курса школьной геометрии всем хорошо известно, что оно выводится не из видимой действительности, или опыта, а из других, ранее доказанных положений (теорем). Такое доказательство является опосредованным. Итак, если в непосредственном доказательстве истинность или ложность какого-либо утверждения устанавливается на основе соотнесения его с действительностью, то в опосредованном доказательстве некое высказывание подтверждается или опровергается с помощью других высказываний, истинность которых установлена ранее и не подлежит сомнению. Понятно, что предметом внимания логики является именно такое доказательство.

5.2. Структура доказательства

Опосредованное доказательство имеет определенную структуру, которая состоит из трех элементов:

1. Тезис – это то, что доказывается (какое-либо суждение, высказывание, утверждение и т. п.).

2. Аргументы, или основания – это то, чем доказывается (какие-либо суждения, высказывания, утверждения и т. п., истинность которых установлена ранее). Как видим, понятия аргументы и основания являются в логике равнозначными, а соответствующие термины представляют собой синонимы.

3. Демонстрация – это то, как доказывается. На первый взгляд наличие этого третьего элемента в структуре доказательства не совсем понятно: есть тезис, и есть аргументы, которые его обосновывают, или из которых он вытекает, – вот, кажется, и все доказательство. Здесь важно вспомнить закон достаточного основания, который требует не просто присутствия аргументов в неком доказательстве, но и говорит о том, что они должны быть достаточными для доказательства тезиса, т. е. обуславливающими его с достоверностью. Как уже отмечалось, часто встречаются ситуации, когда аргументы, или основания наличествуют, но не являются достаточными (Преступление совершил Н., ведь он сам в этом признался). Более того, нередко бывает так, что аргументы, или основания вообще не связаны с тезисом (Ты виноват уж тем, что хочется мне кушать). Поэтому в доказательстве необходимо показать (продемонстрировать) во-первых, связь аргументов с тезисом, а, во-вторых, их достаточность для его подтверждения или опровержения (без этого никакого доказательства нет). Итак, третий и наиболее важный элемент доказательства – это демонстрация, или способ связи аргументов с тезисом.

Рассмотрим все элементы доказательства с помощью примера. В качестве тезиса возьмем высказывание: Шахматы – это полезная игра. Аргументами в данном случае могут быть два суждения:

1. Если что-то развивает мышление, то оно полезно;

2. Шахматы развивают мышление.

Как видим, первый аргумент представлен сложным импликативным суждением, а второй является простым, или категорическим суждением. Если расположить эти аргументы друг под другом, то получится классическая форма условно-категорического силлогизма утверждающего модуса:

Если что-то развивает мышление, то оно полезно.

Шахматы развивают мышление.

Шахматы полезны

В данном силлогизме посылки представляют собой аргументы, а вывод – тезис. Таким образом, в рассматриваемом доказательстве демонстрацией является условно-категорический силлогизм (демонстрация проходит в форме условно-категорического силлогизма). Выше говорилось, что демонстрация призвана обеспечить не только связь аргументов с тезисом, но и гарантировать их достаточность для его доказательства. В любом силлогизме, как известно, вывод вытекает из посылок с достоверностью. Следовательно, если в доказательстве аргументы являются посылками силлогизма, а тезис представляет собой его вывод, то демонстрация, проходящая в форме этого силлогизма, вполне выполняет свою задачу, и доказательство следует признать безупречным.

Демонстрация в доказательстве может быть выражена не только условно-категорическим силлогизмом, но и вообще – всяким умозаключением, которое дает достоверные или граничащие с достоверностью выводы. Итак, структура опосредованного доказательства включает в себя тезис, аргументы, или основания и демонстрацию.

5.3. Прямые и косвенные доказательства?

На подтверждение и опровержение доказательства делятся, как мы уже знаем, по цели, а по способу демонстрации они бывают прямыми и косвенными. В прямом доказательстве истинность или ложность тезиса выводится непосредственно из аргументов, а в косвенном – подтверждение или опровержение тезиса выводится, соответственно, из ложности или истинности антитезиса (т. е. высказывания, противоречащего тезису). Иначе говоря, в косвенном доказательстве рассмотрению подвергается не тезис, а антитезис: устанавливается его истинность или ложность. Далее, если антитезис оказывается истинным, то тезис (по закону исключенного третьего) следует признать ложным; если же антитезис ложен, то тезис с необходимостью истинен. Такие доказательства также часто называют доказательствами "от противного".

В предыдущем параграфе был приведен пример прямого доказательства (в котором тезисом было суждение: Шахматы – это полезная игра). Теперь рассмотрим пример косвенного доказательства. В качестве тезиса возьмем высказывание: Две прямые пересекаются в единственной точке (это одна из теорем геометрии). Для выяснения истинности или ложности данного утверждения выдвинем антитезис: Две прямые пересекаются не в единственной точке (т. е. они имеют две, три или более точек пересечения). Рассматривая это высказывание, мы заметим, что если, например, две прямые пересекаются в двух точках, тогда через две точки пространства проходят две прямые; а это противоречит известной аксиоме о том, что через две точки пространства проходит одна и только одна прямая. Таким образом, две прямые не могут пересекаться в двух (а также – трех, четырех и т. д.) точках, т. е. антитезис ложен, а тезис, следовательно, истинен.

Поскольку доказательства делятся на подтверждения и опровержения, а также на прямые и косвенные, то всего можно выделить четыре вида доказательств:

1. прямое подтверждение,

2. косвенное подтверждение,

3. прямое опровержение,

4. косвенное опровержение.

Назад Дальше