Популярная философия. Учебное пособие - Гусев Дмитрий Алексеевич 41 стр.


8. Гипотеза Большого Взрыва

Точно ответить на вопрос о происхождении Вселенной современная наука пока не может (и вряд ли будет в состоянии это сделать в ближайшее время – настолько он сложен). Однако у нее есть на этот счет более или менее обоснованные предположения. Одно из них является в настоящее время наиболее распространенным и достаточно убедительным. Это гипотеза Большого взрыва, идея о котором была предложена еще в 40-е гг. прошлого столетия, а утвердилась в естествознании в 70-е гг.

Наблюдая все существующее вокруг нас, можно заметить одну интересную закономерность: все большое, прежде чем таковым стать, является маленьким. Вы бросаете в землю крохотное зернышко едва различимое глазом, а из него вырастает мощное дерево, превосходящее породившее его зернышко по своим размерам и массе в миллионы раз. Кроме того, невзрачное зернышко почти бесформенно и кажется нам предельно простым, невзрачным объектом. А могучее дерево поражает нас красотой и величием своих форм: огромные корни, простирающиеся по земле на многие метры, широкий и высокий ствол, тянущий во все стороны сильные ветви, замысловатого рисунка кора и несчетные мириады разного оттенка листьев, шелестящих на ветру, укрывающих от дождя и спасающих от палящих солнечных лучей. Как то ни удивительно, но это огромное дерево взялось из ничтожного, почти незаметного зернышка. Значит оно в нем было запрограммировано, уже содержалось в неком сжатом или свернутом, невидимом состоянии. А человек за девять месяцев до своего рождения является мельчайшим микроорганизмом – клеткой, которую можно разглядеть только в мощный микроскоп. Однако в ней уже заложен весь будущий человеческий организм с руками, ногами, головой и всем прочим. Итак, все большое берется из маленького. Ни одна вещь не является исключением из этого правила. Почему бы не предположить, что данная закономерность распространяется и на Вселенную в целом?

Гипотеза Большого взрыва говорит, что очень давно (приблизительно 20 миллиардов лет назад) Вселенная была невероятно малых размеров. Ее радиус равнялся примерно 10–12 см, что близко к радиусу электрона. Мысленно разделите миллиметр на 100 миллиардов частей. Одна такая часть и есть 10–12 см. Говоря иначе, все бескрайнее невообразимое пространство нынешнего космоса, расстояния в котором измеряются миллионами световых лет, было спрессовано в предельно сжатом объеме, который являлся настолько малым, что его можно было бы назвать словом "ничто". И действительно, что такое одна стомиллиардная часть миллиметра? Почти ничто! Понятно, что плотность вещества в этом ничтожном объеме была колоссальной – приблизительно 1091 г/см3. Также ясно, что в нем не было ни звезд, ни планет, ни всего прочего, ныне существующего, но все бесконечное многообразие Вселенной было заложено в этот первоначальный микрообъект, обычно называемый сингулярным (лат. singularis – один, единственный), содержалось в нем потенциально, то есть, – неявно, незримо, представляло собой возможность, которая должна была превратиться в действительность. Точно так же, как и большое дерево с многообразием своих форм потенциально содержится в маленьком зернышке. Примерно 20 миллиардов лет назад колоссальная плотность и энергия этого сингулярного объекта привели к Большому взрыву, результатом которого было образование и дальнейшая эволюция всех объектов Вселенной.

Есть и другое предположение о происхождении Большого взрыва. 20 миллиардов лет назад Вселенная была не ничтожно малым объектом, а вакуумом. Это слово переводится с латинского как пустота. Однако, вакуум – это не абсолютное ничто, не небытие. Чтобы подчеркнуть это, часто употребляют понятие физического вакуума, который представляет собой особое состояние материи. Говоря просто, физический вакуум – это такое ничто, в котором потенциально, скрыто, неявно содержится все. Он способен внезапно и резко перестраивать свою структуру, то есть – меняться, переходить из одного состояния в другое. Такие переходы называют фазовыми (например, переход воды в пар и лед). В результате одного из фазовых переходов физического вакуума, который и был Большим взрывом, он из пустоты (ничего) превратился во Вселенную (все). Известный отечественный популяризатор науки В. С. Барашенков в своей книге "Кварки, протоны, Вселенная" описывает Большой взрыв следующим образом: "Предполагается, что вся энергия родившегося 20 млрд. лет назад мира была заключена в его вакууме… Состояние рождающейся Вселенной напоминало то, что бывает высоко в горах перед грозой: напряженная, густая, потрескивающая сполохами разрядов пустота, которая вот-вот превратится в заполняющий все пространство водяной потоп" (Барашенков В. С. Кварки, протоны, Вселенная. М.: Знание, 1987. С. 145.).

Какой бы ни была Вселенная по различным представлениям до взрыва – сверхплотным микрообъектом или физическим вакуумом, непроизвольно возникает вопрос: а что существовало до этого микрообъекта или вакуума, а также – что находилось вокруг того и другого, или, иначе, где была эта точка или этот вакуум? Такого рода вопросы отпадут, если мы вспомним про теорию относительности. Ее основной идеей является утверждение о том, что материя, пространство и время – это не разные вещи, а по крупному счету, одно и то же и не существуют друг без друга. Когда мы спрашиваем, что было до сверхплотного микрообъекта или вакуума, то автоматически предполагаем, что время существовало само по себе, еще до появления материи. Понятно, что материя родилась из микрообъекта или из вакуума в момент Большого взрыва. Когда мы спрашиваем, где существовал сверхплотный микрообъект или вакуум, то автоматически предполагаем, что пространство существовало само по себе, еще до появления материи. Вспомним, Эйнштейн показал, что не может быть никакого пространства и времени без, помимо или вне материи. А это значит, что спрашивать о том, где находился сингулярный микрообъект или вакуум, равно как и – о том, что существовало до того или другого, нельзя, потому что, если до взрыва не было материи, то не было и пространства со временем. А вернее, они являлись или этим сверхплотным микрообъектом, или физическим вакуумом и появились, как и материя, в результате Большого взрыва. В уже упоминавшейся книге В. С. Барашенкова говорится об этом следующее: "Вопрос о том, что было "до начала мира", например, 40 или 50 млрд. лет назад, предполагает, что тогда сохранялись условия, к которым приложимо наше понятие времени. На самом же деле для описания процессов вблизи "начала мира" нужны совсем другие мерки. Использовать здесь наши часы так же бессмысленно, как измерять длину и вес тела термометром" (С. 158–159.).

Гипотеза Большого взрыва не является только умозрительным предположением. В пользу нее косвенно говорят различные наблюдения. Так в 1929 году американский астроном Эдвин Хаббл открыл так называемое красное смещение или, иначе говоря, заметил, что свет далеких галактик несколько краснее ожидаемого, т. е. их излучение смещается в красную сторону спектра. Еще раньше было установлено, что когда некое тело удаляется от нас, то его излучение смещается в красную сторону спектра (красное смещение), а когда оно, наоборот, приближается к нам, то его излучение смещается в фиолетовую сторону спектра (фиолетовое смещение). Таким образом, открытое Хабблом красное смещение свидетельствовало в пользу того, что галактики удаляются от нас и друг от друга с огромными скоростями, т. е., как то ни удивительно, в настоящее время Вселенная расширяется, причем одинаково во всех направлениях, то есть взаимное расположение космических объектов не меняется, а изменяются только расстояния между ними. Точно так же, как не меняется расположение точек на поверхности воздушного шара, но меняются расстояния между ними, когда его надувают. Но если Вселенная расширяется, то обязательно возникает вопрос: а какие же силы сообщают разбегающимся галактикам начальную скорость и дают необходимую энергию. Современная наука предполагает, что исходным моментом и причиной нынешнего расширения Вселенной был Большой взрыв.

Другим косвенным подтверждением гипотезы Большого взрыва является открытое в 1965 году реликтовое излучение (лат. relictum – остаток) Вселенной. Это излучение, остатки которого доходят до нас из того далекого времени, когда ни звезд, ни планет еще не было, а вещество Вселенной было представлено однородной плазмой, которая имела колоссальную температуру. Таким образом, раньше Вселенная была намного более теплой, чем в настоящее время. Причиной столь высокой ее температуры в отдаленном прошлом мог быть Большой взрыв. Однако идея о нем продолжает оставаться гипотезой и ждет своего подтверждения или опровержения от будущих научных исследований.

9. Этапы космической эволюции

Поскольку третья научная картина мира рассматривает Вселенную как результат глобальной мировой эволюции, то важной задачей нынешней науки является установление механизма или движущих сил этой эволюции. Почему в мире все развивалось по восходящей линии, шло путем прогресса, постепенно поднимаясь от более простого и менее совершенного к более сложному и более совершенному? К тому же существуют убедительные научные аргументы в пользу того, что развитие должно идти по нисходящей, Вселенная должна не совершенствоваться, а деградировать, то есть – переходить ко все более простому, а в итоге – к простейшему состоянию. Эти аргументы вытекают из такой дисциплины как термодинамика (греч. thermos – теплый и dynamis – сила). Она представляет собой науку о различных тепловых явлениях, о переходах и превращениях тепла. В термодинамике есть два начала или закона. Первый из них звучит так: теплота может как угодно переходить от любого тела к любому другому телу, лишь бы общее ее количество оставалось неизменным. Проще говоря, если где-то теплоты добавилось (одно тело, например, нагрелось на сколько-то градусов), то где-то ее должно в таком же количестве убавиться (другое тело остыло ровно на столько градусов, насколько первое нагрелось). Это первое начало термодинамики называют также законом сохранения и превращения энергии. Итак, в силу первого начала, теплота может переходить от тела к телу в любом направлении. Однако, второе начало термодинамики является ограничением первого и говорит, что переход тепла возможен не в любом, но только в одном направлении.

Приведем простой пример. Допустим перед нами находятся два тела, между которыми происходит теплообмен. Одно из них имеет температуру 100 °C, а другое – 50 °C. Возможно ли, чтобы второе тело отдало первому 25 °C своей теплоты и остыло бы на эти 25° для того, чтобы второе на эту же величину нагрелось, то есть – чтобы первое стало иметь температуру 125 °C, а второе – 25 °C? Возможно ли, чтобы теплота самопроизвольно переходила от менее нагретого тела к более нагретому? Первый закон термодинамики такой переход не запрещает, лишь бы количество теплоты (энергии) сохранялось в прежнем объеме. Второе начало термодинамики говорит о невозможности этого перехода и звучит так: "Теплота не переходит самопроизвольно от холодного тела к более горячему". Все происходит наоборот: теплота всегда переходит только в одном направлении – от более горячего тела к менее горячему. В нашем примере первое тело непременно должно остыть на 25 °C, а второе нагреться на эту же величину, после чего и у первого тела, и у второго будет одинаковая температура (по 75 °C). Как видим, теплота стремится к равномерному распределению между телами, стремится к равновесию.

Из этой закономерности вытекает следующий печальный вывод. Если говорить о Вселенной в целом, то вся ее теплота (энергия) с течением времени должна будет равномерно распределиться между всеми ее частями. Стремление к тепловому равновесию называется возрастанием энтропии. Максимальная энтропия представляет собой хаос. Это значит, что макротела рассыпятся на молекулы, молекулы – на атомы, а атомы – на элементарные частицы, которые будут хаотично носиться в мировом пространстве. Наступление теплового равновесия во Вселенной будет означать ее превращение в хаос или "тепловую смерть Вселенной".

Для пояснения приведем пример. Человеческое тело, как правило, теплее окружающей среды. Если установится тепловое равновесие между телом и средой (например, температура и среды, и тела равна +20 °C), то это будет означать смерть тела. Так и тепловое равновесие во Вселенной равносильно ее смерти. Из хаоса, как утверждали древние греки, она родилась, в хаос же, по законам термодинамики, должна возвратиться.

Однако возникает закономерный вопрос: если Вселенная движется к хаосу, то каким образом она могла не только возникнуть, но и развиться до нынешнего сложного и упорядоченного состояния. Более того, мы наблюдаем дальнейшее усовершенствование мира: постоянно происходит увеличение его сложности, дальнейшая восходящая эволюция. Получается, что Вселенная вопреки прогнозам термодинамики стремится прочь от теплового равновесия и хаоса. Почему? Древние сказали бы, что существует некая разумная, бестелесная сила (Бог или Мировой Разум), которая не позволяет Вселенной рассыпаться в прах и постоянно поддерживает ее в состоянии гармонии и совершенства.

Современная наука говорит, что материя обладает не только разрушительными свойствами, но и созидательными, что она – не пассивное начало мира, способное только к распаду, но, скорее, – активное, способное осуществлять работу и против термодинамического равновесия, могущее самоорганизовываться и самоусложняться. В нынешнем столетии появилась уже упоминавшаяся научная дисциплина – синергетика (греч. synergos – совместно действующий), которая изучает механизмы и законы самоорганизации различных материальных объектов и систем. Иначе говоря, синергетика пытается ответить на вопрос о том, как из хаоса рождается порядок. В качестве примера синергетического эффекта можно вспомнить замысловатую и необыкновенно красивую форму снежинки, которая представляет собой не что иное, как замерзшую каплю воды. Эта капля может быть охарактеризована в качестве хаоса: в ней происходит беспорядочное движение молекул. Однако при замерзании и превращении в ледяной кристаллик – снежинку, из данного хаоса частичек воды рождается упорядоченная структура, удивляющая нас безупречной правильностью своей формы (когда мы разглядываем снежинку, нам представляется, что она создана в соответствии с какой-то геометрической идеей или художественным замыслом; самым невероятным и удивительным в этом случае нам кажется то, что это всего лишь замерзшая капля воды). Современное естествознание описывает все большее количество явлений природы с помощью синергнтической интерпретации. Вселенная в целом также поддается подобного рода объяснению.

Вселенная – это самая большая материальная система из всех возможных. По современным научным представлениям она эволюционировала от простейшего состояния к все более сложному, прошла в своей самоорганизации огромное количество этапов. Наиболее крупными вехами космической эволюции были следующие. 20 миллиардов лет назад произошел Большой взрыв в результате которого, условно говоря, из "ничего" родилось "нечто". Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100 миллиардов градусов. При такой температуре (которая выше температуры центра самой горячей звезды) ни молекулы, ни атомы, ни даже ядра атомов существовать не могут. Поэтому вещество Вселенной пребывало в виде появившихся в результате Большого взрыва элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя одну сотую секунды после взрыва была колоссальной – в 4 миллиарда раз больше, чем у воды. В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 миллиарда градусов. При этой все еще очень высокой температуре, но уже не такой большой как сразу после взрыва, стало возможным образование из элементарных частиц ядер атомов. В большинстве своем это были ядра водорода и гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино (то есть – из разрозненных элементарных частиц). И только через несколько сотен тысяч лет начали образовываться первые атомы, главным образом, атомы водорода и гелия, которые образовали водородно-гелиевую плазму.

Как уже говорилось, в 1965 году было обнаружено так называемое реликтовое излучение Вселенной, представляющее собой излучение горячей плазмы, сохранившееся с того времени, когда звезд и галактик еще не было. В то время Вселенная была умеренно нагретой плазмой (с температурой около 4000 градусов), заключенной в небольшой области с радиусом в 15 миллионов световых лет. Мы говорим "небольшой", потому что ныне расстояние до самой удаленной из наблюдаемых галактик исчисляется 10 миллиардами световых лет. Из этой простейшей плазмы, являвшейся смесью водорода и гелия в процессе эволюции возникло все многообразие Вселенной. С течением времени под действием гравитационных и электромагнитных сил первоначально почти однородная плазма распалась на огромные сгустки, из которых в дальнейшем образовались галактики и их скопления. Появление галактик произошло приблизительно 19–17 миллиардов лет назад. Примерно 15 миллиардов лет назад появились звезды, а также атомы других элементов (помимо водорода и гелия). Около 5 миллиардов лет назад родилось Солнце. Земля образовалась примерно 4,6 миллиарда лет назад. Приблизительно 3,8 миллиарда лет назад на нашей планете зародилась жизнь. Около 450 миллионов лет назад появились растения, а 150 миллионов лет назад – млекопитающие животные. Примерно 2 миллиона лет назад начался антропогенез (греч. anthropos – человек и genesis – происхождение) – эволюция человека. Приблизительно 40 тысяч лет назад, как мы уже знаем, появился человек современного типа или Homo Sapiens.

Мы рассмотрели основные этапы космической эволюции в наиболее обобщенном виде. Понятно, что все указанные временные рамки являются приблизительными. Дальнейшее развитие науки будет все более прояснять и уточнять картину грандиозной истории Вселенной.

Назад Дальше