Квантовая механика перестала быть областью лабораторных исследований - ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.
Содержание:
Предисловие 1
Глава 1 - Магия запутанных состояний 2
Глава 2 - Понятие "состояние" 15
Глава 3 - Главная Матрица. Загрузка 29
Глава 4 - Квантовые компьютеры. Практическая реализация 47
Глава 5 - Градиент энергии 60
Заключение 70
Приложение 71
Словарь терминов 71
Список литературы 72
Примечания 74
Сергей Доронин
КВАНТОВАЯ МАГИЯ
Предисловие
О чем эта книга? Трудно сказать одной фразой… Но если все-таки попробовать кратко сформулировать, то это моя попытка осмыслить очень важные для всех нас результаты, полученные квантовой механикой за последние годы. Важные не только в плане практической реализации невиданных технических устройств на волне грядущей "второй квантовой революции", но еще более значимые для нашего мировоззрения как шаг к качественно новому и более глубокому пониманию окружающего мира.
Видимо, требует некоторых пояснений и само название книги. Что же подразумевается под "квантовой магией"? Основное значение термина "магия" в этой книге мы определим следующим образом: это любые процессы или явления в окружающем мире, которые не имеют классического аналога. Проще говоря, это такие процессы, которые противоречат всем известным законам классической физики и выходят за рамки наших привычных представлений о реальности.
И все же слово "магия" в названии книги имеет ряд дополнительных оттенков. Это и очарование квантовой механики с ее невероятными возможностями, поистине "магическими" по сравнению с другими теориями. Здесь и намек на то, что квантовая теория - это инструмент не только для ученых, но и для каждого из нас, поскольку она дает возможность любому человеку существенно раздвинуть границы миропонимания и заглянуть в самые потаенные глубины Мироздания. И речь идет вовсе не о глубинах микромира, куда квантовая механика была нацелена прежде. Мы будем говорить именно об окружающем всех нас обычном мире - о макромире, в котором существуем мы сами, а вовсе не элементарные частицы. И попытаемся выяснить, почему последние достижения квантовой теории способны коренным образом изменить все наши привычные представления об окружающей реальности.
Чуть сложнее разъяснить понятие "квантовая", поскольку довольно часто встречается предубеждение, что квантовая механика описывает только микроскопические системы - субатомные частицы, атомы, молекулы, что это некая узкая теория, которая не имеет никакого отношения к окружающим нас объектам. Это не так. Более правильно было бы сказать, что без квантовой теории невозможно адекватно описать поведение микрочастиц, но ее законы являются всеобщими - в макромире они так же справедливы, как и в микромире. Другое дело, что для описания макрообъектов законы квантовой теории упрощаются, и обычно используют их классическое приближение, пренебрегая квантовыми эффектами.
Квантовую теорию очень часто недооценивают, хотя, например, без ее законов само существование макроскопических тел выглядело бы настоящим чудом, сверхъестественным и необъяснимым явлением. Их наличие можно было бы объяснить разве что "высшими силами", так как силы и законы, известные в классической физике, не могли объяснить замечательную стабильность атомов и молекул, которая лежит в основе всех физических и химических свойств вещества. Причем дело не в том, что квантовая теория проникла на микроуровень и, описав поведение атомов, смогла объяснить макроскопические свойства вещества. Кстати сказать, мнение, что знание самых малых "кирпичиков" материи (элементарных частиц) помогает нам полнее узнать природу вещества и физических полей, является довольно распространенным. Вовсе нет. Это как раз классическая точка зрения, которая предполагает, что, зная структуру и поведение отдельных частей системы, мы можем вывести законы поведения объекта как целого. Квантовая теория говорит об обратном - о том, что даже максимально возможное и полное знание частей принципиально не может дать нам понимания целого. Соотношение между частью и целым в квантовой механике гораздо более сложное, чем в классической физике.
Квантовый подход, прежде всего, предполагает рассмотрение выделенной системы как единого целого, в пределах которого могут проявляться те или иные свойства частей. При этом утверждается, что обратный путь - от части к целому - тупиковый, он не в состоянии привести к правильным результатам и приблизить нас к пониманию фундаментальных физических законов.
Все основные достижения квантовой механики базируются не только на познании микромира, а в большей степени - на принципиально ином подходе к описанию физической реальности. В отличие от классической физики, имеющей дело непосредственно с физическими характеристиками объектов, квантовая теория исходит из более фундаментального и первичного понятия "состояние системы". С этой точки зрения все физические величины, характеризующие систему, являются лишь вторичными проявлениями, определяемые тем или иным ее состоянием. Речь идет о произвольных системах - больших и малых. Квантовая теория - это описание в терминах состояний любых объектов, независимо от того, велики они или малы. С одинаковым успехом методы квантовой теории могут применяться как к микрочастицам, так и ко всей Вселенной в целом.
Таким образом, термин "квантовый" не следует понимать слишком узко, как синоним чего-то очень мелкого и незначительного. Прежде всего, это определенный способ описания окружающей реальности, который исходит из понятия "состояние системы", и в книге данный термин используется чаще всего именно в этом смысле.
Что же касается самой книги, то написана она не только с целью ознакомить читателя с самыми последними достижениями квантовой механики, в частности, с чисто физическими результатами, полученными при разработке квантового компьютера, - одновременно это и моя попытка философского осмысления этих результатов.
Утверждение, что они имеют большое значение для каждого из нас, кому-то может показаться натянутым и чересчур преувеличенным. На это я замечу, что все мы строим свою жизнь, исходя из своего мировоззрения. Даже когда мы просто неосознанно "плывем по ее течению", то делаем это тоже в силу своих устоявшихся представлений об окружающей реальности. Причем миропонимание часто базируется на широко распространенных воззрениях классической физики о материальной основе окружающего нас мира. Многим представляется, что, помимо вещества и физических полей, во Вселенной ничего больше нет, что элементарные частицы являются ее исходным строительным материалом, своего рода "вечной и неуничтожимой" субстанцией Космоса.
Довольно часто именно такое ограниченное понимание мироустройства формирует систему жизненных ценностей человека, определяет его приоритеты, цели и стремления, лежит в основе его земного пути. Поэтому вполне естественно ожидать, что последние достижения квантовой теории будут иметь большое значение для каждого из нас, поскольку они не укладываются в рамки такого упрощенного взгляда на реальность. Они способны коренным образом изменить наше привычное мировоззрение и привести к существенному пересмотру всей системы жизненных ценностей и устремлений человека.
Основной вывод, к которому приходит квантовая теория, можно кратко сформулировать следующим образом: материя, то есть вещество и все известные физические поля, не являются основой окружающего мира, а составляют лишь незначительную часть совокупной Квантовой Реальности .
Но этот краткий вывод, как вы понимаете, таит в себе самые глубокие и далеко идущие последствия, которые сегодня невозможно даже представить.
В своей книге я попытался подробно осветить теоретические и экспериментальные результаты, полученные за последние годы в области физики квантовой информации, которые позволяют сделать этот значимый для всего естествознания вывод.
Надеюсь, что читатель сумеет отделить приведенные в книге факты и сами физические результаты от моей трактовки и моего личного мнения на этот счет. Естественно, я вовсе не претендую на то, что моя точка зрения является единственно верной. Но то, что сами факты заставляют о многом задуматься и позволяют взглянуть на окружающую нас реальность другими глазами, лично для меня очевидно.
Глава 1
Магия запутанных состояний
1.1. На пороге эры квантовых компьютеров
Сейчас каждый из нас хотя бы в самых общих чертах представляет, что такое обычный компьютер. А что вы скажете насчет компьютера, информационный ресурс которого превышает число частиц во Вселенной (по оценкам специалистов, оно равно 10), - компьютера, который по своей эффективности превосходил бы обычный ПК примерно во столько же раз, во сколько Вселенная превосходит один атом? Скажете, что это бред, что такое просто немыслимо? И будете неправы! Поскольку в настоящее время работа над такими компьютерами идет полным ходом. Их назвали квантовыми компьютерами. Для этого устройства нужно не так уж много рабочих ячеек памяти, обрабатывающих информацию, - достаточно будет всего лишь нескольких сотен. Скажем, довольно 300 ячеек, чтобы информационный ресурс компьютера примерно на 10 порядков превысил число частиц во Вселенной (2 = 10). И весь этот гигантский массив информации будет согласованно изменяться за один рабочий такт. Столь поразительное различие между обычным и квантовым компьютерами объясняется тем, что эффективность последнего растет экспоненциально с увеличением числа его ячеек памяти.
Чтобы вы могли более наглядно представить себе, что такое экспоненциальный рост, напомню известную легенду о том, как индийский правитель решил отблагодарить изобретателя шахмат за новую интересную игру. Тот попросил выдать ему в качестве награды зерна пшеницы: на первую клетку шахматной доски следовало положить одно зернышко, на вторую - два, на третью - четыре, помещая на каждую следующую клетку в два раза больше зернышек, чем было на предыдущей. Царь удивился такой скромной просьбе, однако выполнить ее оказалось невозможно. Во всем мире не нашлось бы столько пшеницы. Таким количеством зерна можно было усыпать всю планету. Амбар, в котором бы поместилась вся эта пшеница, должен был быть высотой до Солнца.
С квантовым компьютером ситуация та же самая: добавление каждой новой ячейки памяти к уже существующему регистру вдвое увеличивает общую эффективность устройства.
Число различных состояний ячеек памяти у классического компьютера такое же, как у квантового. Так, классический компьютер с регистром из 300 бит может последовательно перебрать те же 2 состояний, но в каждый момент времени он может находиться лишь в одном из них. В то время как квантовый компьютер способен находиться одновременно во всех этих состояниях (в их суперпозиции). Если в классическом регистре изменяется один бит, то другие биты на это никак не реагируют - они не меняются. Когда же в квантовом компьютере изменяется один бит (он называется квантовым битом - кубитом), то вместе с ним согласованно меняются все остальные, и вся суперпозиция мгновенно перестраивается. За счет этого обеспечивается гигантское быстродействие, и по оценкам специалистов получается, что вычислительные ресурсы квантового компьютера будут экспоненциально велики по сравнению с классическим. Для наглядного подтверждения того, насколько значительно преимущество квантового компьютера, можно привести еще один пример. Представьте, что у вас есть квантовый компакт-диск, который, в отличие от обычного, содержит информацию в кубитах, а не в битах. В квантовом CD имеет место суперпозиционное состояние кубитов, которое содержит в себе сразу все возможные дискретные последовательности из 0 и 1. Квантовый CD - это своего рода универсальная матрица, с которой можно "отштамповать" любой классический CD с любой информацией и последовательностью битов. Единственное ограничение - это невозможность превысить объем исходного CD в битах. Таким образом, один квантовый CD содержит в себе одновременно все классические CD, которые были, есть или будут созданы, - с любой информацией, осмысленной или нет, с любой двоичной последовательностью из 0 и 1. Далее мы подробнее поговорим о том, как именно можно с квантового CD "проявить" нужную информацию и "отштамповать" классический CD.
С теоретической точки зрения, создание квантового компьютера особых сложностей не представляет - достаточно того, чтобы ячейки памяти (кубиты) взаимодействовали друг с другом, и мы умели бы целенаправленно манипулировать их состоянием. Однако на практике все оказывается гораздо сложнее - и об этом мы поговорим более подробно в одной из следующих глав.
А сейчас - немного о том, что предшествовало работе по созданию квантового компьютера. Одним из первых, кто обратил внимание на возможную перспективу создания таких компьютеров, был Ричард Фейнман.
В 1982 году он задался вопросом, каким должен быть компьютер, позволяющий моделировать природу. Причем имелось в виду не простое моделирование, основанное на хорошо известных законах классической физики, которые отражают ограниченную часть реальности. Фейнман говорил о моделировании физики на фундаментальном уровне, "когда компьютер делает точно то же, что и природа", о более полном и глубоком описании реальности, при котором классическая реальность и ее законы получались бы в классическом приближении как предельный случай (упрощенный вариант квантового описания). Ученый пришел к выводу, что такой компьютер должен быть квантовым. Но речь шла не о том, что он должен работать по законам квантовой механики - на их основе сейчас и так разрабатывается вся электроника, а о том, что, если в настоящее время все современные приборы и компьютеры работают по квантовым законам, но в классическом режиме, то квантовый компьютер и работать должен в квантовом режиме. В этом случае в игру вступает основной принцип квантовой теории - принцип суперпозиции состояний. Компьютер получает возможность оперировать когерентными (согласованными) состояниями ячеек памяти. Такими квантово-когерентными устройствами, рабочим ресурсом которых являются суперпозиционные состояния, человечество никогда еще не располагало. Когда они начнут выходить из научных лабораторий в коммерческое производство и в нашу повседневную жизнь, это станет началом второй квантовой революции. По своим масштабам и последствиям она значительно превзойдет "скромные" результаты первой, которая "родила" атомную бомбу и практически все современные электронно-технические устройства.
Идеи Фейнмана были интересны, но в те годы они не вызвали особого резонанса в научной среде. Ситуация коренным образом изменилась в 1994 году, когда Питер Шор показал, что квантовый алгоритм способен свести задачу факторизации (разложения целого числа на простые множители) к полиномиальному классу сложности, в то время как обычный алгоритм экспоненциально зависит от входных данных.
Например, обычному компьютеру, выполняющему 10 операций в секунду, потребуется около года, чтобы разложить на простые множители число из 34 цифр, а время, необходимое для разложения числа из 60 цифр, уже превысит возраст Вселенной (10 с). Используя же квантовый алгоритм, эту задачу можно решить достаточно быстро.
Результат, полученный П. Шором, с практической точки зрения означает, что квантовый компьютер способен за реальное время "взломать" шифры, используемые, например, в банковской сфере. Там как раз широко применяется криптосистема, основанная на невозможности разложения достаточно большого числа на простые множители за приемлемое для обычных компьютеров время. Осознав ситуацию и на наглядном примере убедившись в возможностях квантового компьютера, финансовый мир, частные фирмы и государственные учреждения многих стран мира направили огромные средства на научные исследования в области квантовых вычислений. В эту же сферу устремились и многие научные коллективы, срочно переориентировав свою тематику. Квантовым вычислениям стало посвящаться наибольшее количество научных публикаций по сравнению с другими разделами физики. В отдельные годы число напечатанных в реферируемых журналах статей на эту тему превышало количество публикаций на все другие темы из области физики вместе взятые. Все это способствовало тому, что достаточно быстро были созданы реальные прототипы квантового компьютера, а теоретические основы, необходимые для его создания, получили очень мощный импульс к развитию. Прежде всего это касается теории запутанных состояний, теории декогеренции и квантовой теории информации.