Большая энциклопедия техники - Коллектив авторов 32 стр.


В состав входят карданный вал с двумя карданами, в редких случаях с одним, скользящая вилка, две крестовины, или шарниры, две фланец-вилки, уплотнения, приспособления для крепления. Для производства валов используется труба, для сплошных применяют пруток, одна сторона вала оснащается привариваемой неподвижной вилкой шарнира, вторая сторона обеспечивается шлицевой втулкой, на которую насаживается мобильная скользящая вилка с шарниром. Шлицевое соединение предназначено для трансформации рабочей длины в результате работы подвески. Карданная передача может выполняться из нескольких частей, имеющих промежуточные подвесные опоры. Используется такой вариант в связи с тем, что большая скорость вращения, благодаря распределенному относительно длины остаточного дисбаланса, приводит длинные валы к изгибанию. Четко отбалансированный по определенной скорости вал на других скоростях может создать значительную вибрацию. Шарниры представляют собой сочетание вилок, фланцев вилок, крестовины, имеющей игольчатые подшипники, крепежных приспособлений. Карданная передача создает передачу крутящего момента с пульсацией угловой скорости, поэтому для исключения эффекта такого вида вилки с двух сторон вала устанавливают в одной плоскости, и это действие производится в момент сборки карданного вала. Карданные шарниры в таком положении вносят противофазные пульсации угловой скорости, компенсируя вибрации относительно друг друга.

В случае сочетания при помощи карданного вала таких механизмов, у которых угол соединения и расстояние способны варьироваться, например главная передача и коробка передач, вводится осевая компенсация, представляющая собой скользящее шлицевое соединение, разработанное с учетом возможного модифицирования длины вала в установленных рамках. Размер угла между валами обуславливает карданную передачу, в которой используются жесткие или упругие полукарданы, полные карданы неравных угловых скоростей. Самыми распространенными считаются полные карданы, оснащенные такими главными деталями, как две вилки, крестовина, игольчатые подшипники, уплотняющие приспособления, опоры для цапф крестовин. Коэффициент полезного действия одного кардана составляет 0,985-0,99.

Карданный вал может обладать дисбалансом, признаками для установления дисбаланса являются усиленные вибрации, способные в результате различных частот вращения снижаться и увеличиваться. Если вибрации изменяются при движении на различных скоростях, то дисбаланс присутствует. Дисбаланс создает дополнительные нагрузки на шарниры и детали трансмиссии, связанные с карданной передачей, ослабляются крепления, приводя к более быстрому выходу из строя машины и к аварийным ситуациям.

На организм человека дисбаланс также влияет не лучшим образом: человек становится раздражительным, появляется быстрая утомляемость, что приводит к различным заболеваниям. Дисбаланс может возникать в результате недостаточной точности при производстве отдельных частей карданной передачи; при изготовлении из неоднородного материала с различными плотностями; при неточном общем центрировании взаимозависимых деталей; в случае появления зазоров при соединении деталей и агрегатов, а также при смещении осей в результате установки; при деформации валов в результате термического и механического воздействия и при получении повреждений в период эксплуатации.

Уровень дисбаланса карданных валов зависит от динамической балансировки, осуществляемой при помощи специальных стендов.

Для устранения дисбаланса используются балансировочные пластины, фиксируемые на трубе, балансировочные прокладки, устанавливаемые под стопорные крышки подшипников крестовины, также применяется удаление металла со специальных бобышек, находящихся на вилках фланцев. Балансировка осуществляется, главным образом, при сборе с шарнирами. Дисбаланс зависит от зазоров, полученных при составлении шлицевого соединения и крестовины.

Для устранения вибрации некоторые производители автомобилей внедряют эластичные винты, демпферные резинометаллические муфты и подвесные опоры, что позволяет увеличить срок службы карданов.

Если вращение обеспечивается в результате подвижного объединения звеньев, то это жесткий карданный механизм, если же в результате упругих характеристик специальных элементов – упругий карданный механизм.

Механизм получил название в честь Дж. Кардано, который разработал подвес для сохранения постоянного положения тела, опора которого совершает различные повороты.

Простой жесткий карданный механизм – шарнир Гука, оси вращения I, II, III, IV этого шарнира пересекаются под углом – в неподвижной точке О центра сферы с радиусом ОВ = ОВ' = ОС = ОС'. В случае, если угол пересечения находится в пределах от 0 до 90°, шарниры В, В', С, С' попарно очерчивают окружность равносильного радиуса в плоскостях, которые перпендикулярны осям I и II, что позволяет создавать передачу вращения с переменным углом α. Механизм такого типа характеризуется неравномерностью скорости вращения ведомого вала, в результате постоянной скорости ведущего вала. Скорость ведомого вала увеличивается с повышением угла α в том случае когда он равняется 90°, передача вращения при помощи карданного механизма делается невозможной.

Двойной карданный механизм используется для необходимости создания равномерного вращения ведомого вала, при этом углы перемещения равны, вилки на валу размещены в одной плоскости. Жесткий карданный механизм может соответствовать углу наклона валов, максимально достигающих 38°.

Упругий карданный механизм используется для угла наклона валов в 3-5°, при этом гибкие компоненты изготавливаются из крепкого эластичного вещества.

В случае, когда двойной карданный механизм неприменим, применяется кардан, разработанный на делении угла между валами с помощью биссекторной плоскости.

Карданный механизм получил широкое распространение в разнообразных устройствах, например в летательных аппаратах, в станках, в автомобилях, сельскохозяйственных машинах, т. е. в том случае, когда работа основана на необходимом перемещении взаимного месторасположения валов, направленных на передачу вращательного движения.

Каретка

Название произошло от итальянского слова carretta, переводящегося как "тележка". Определяется как узел устройства или машины, который выполняет функцию переноса ряда деталей, для перемещения устанавливается на направляющих, а также может устанавливаться в подшипнике для произведения вращения в нем.

Каретка велосипеда также получила название кареточного узла, является подшипниковым узлом, который создает вращение шатунов с педалями и ведущими звездами в зависимости от рамы велосипеда. Выполняет функцию передачи крутящего момента от педалей к колесу велосипеда с наименьшими потерями. Подшипники каретки необходимо хорошо защитить от попадания грязи и воды, так как каретка устанавливается в нижней части рамы за передним колесом.

Каретки подразделяются на открытые и закрытые, называемые картриджами или капсулами. Открытые каретки имеют ввинчиваемые чашки с подшипниками в кареточной трубе рамы, при этом вал вращается в подшипниках. Для этого типа кареток большое значение имеет точный размер созданной рамы, в противном случае возможны перекосы и недостаточная защищенность относительно факторов воздействия окружающей среды. Картриджи характеризуются наличием жесткого корпуса, в который помещаются подшипники, устанавливаемого в велосипедную раму, что позволяет исключить перекос подшипников и не прибегать к регулировке каретки. В картридже устанавливается также удобное уплотнение вала. Картриджи могут быть как неразборными, основная часть используемых картриджей, так и разборными.

Каретка для современного велосипеда достаточно часто создается в виде неразборного узла, не подлежащего обслуживанию, т. е. в качестве картриджа, поэтому при неисправности, например заедания или люфта, каретка подлежит замене на новое устройство. Дешевые модели велосипедов оснащаются разборной кареткой, обеспечиваемой шариковыми подшипниками, каретка может регулироваться при люфте, усиленной затяжке подшипников. Также разработаны разборные каретки с двумя подшипниками с каждой стороны, игольчатый и шариковый подшипники, где шариковый служит фиксатором. Созданы модули кареток, которые оснащаются шатунами.

Каждый тип каретки обеспечивается своим стандартом на шаг резьбы, благодаря которому каретка устанавливается, т. е. ввинчивается в кареточный узел рамы. Резьба подразделяется на дюймовую и метрическую. Каретки изготавливаются различной ширины, которая должна совпадать с шириной рамы велосипеда, с разной длиной оси, при выборе необходимо рассмотреть достаточность удаления шатунов от рамы и возможность перевода переднего переключателя на самую маленькую звездочку, при этом исключается упирание в раму. На корпусе неразборных кареток наносятся ее размеры. В каретке применяются шатуны двух образцов: шлицевого образца и так называемого квадратного образца.

На каретках с шатуном шлицевого образца ось изготавливается с круглым сечением, концы осей оснащаются 8 выступами, при этом ось создается пустотелой, что значительно облегчает каретку. Полыми болтами шатуны фиксируются к каретке. Используются каретки и шатуны такого типа для изготовления велосипедов высокого класса. Также разработаны каретки традиционной конструкции с шатунами шлицевого образца, концы такой каретки обеспечиваются квадратными сечениями, шатун притягивается с помощью винта, вворачиваемого в ось. Каретки с квадратными сечениями на концах оси оснащаются шатуном, притягиваемым к оси при помощи гайки, которая накручивается на ось каретки.

Каретками оснащаются металлорежущие станки, в которых они являются нижней опорной частью суппорта, перемещение каретки осуществляется по направляющим станины, например в токарных станках, по направляющим поперечины в продольно-строгальных и карусельных станках; также каретка может быть частью стола станка, которая движется по направляющим консоли, например в поперечно-строгальных и фрезерных станках. В ткацких станках каретка служит для зевообразования в результате выработки тканей с мелким узором или сложностью переплетений. Каретки включены в конструкцию пишущих машинок, для этого они изготавливаются в качестве рамки с валиком для бумаги. Широко используются стальные каретки, оснащенные металлическими роликами, предназначенные для монтажа в кронштейн направляющих, сочетаются с регулируемыми капсулами. Велосипеды оснащаются каретками, которые представляют собой педальное устройство велосипеда.

Каретки с электроприводом применяются для электрических талей, создавая перемещение подвешенной тали с грузом в горизонтальной ориентированности относительно монорельсового пути. Непосредственно передвижение выполняет электрический привод каретки, таль служит как электротельфер.

Ручная каретка, т. е. без электрического привода, используется для электрических талей для произведения перемещения подвешенной электрической тали с грузом также в горизонтальном направлении относительно монорельсового пути, однако для создания движения необходимо произведение усилия, которое прикладывается непосредственно к тали.

Картер

Название произошло от английского слова carter. Представляет собой недвижимую деталь устройства или механизма, например редуктора, двигателя, в основном коробчатого сечения для опоры и предохранения от загрязнения рабочих элементов. Нижняя часть картера называется поддоном и является контейнером, содержащим смазочное масло.

Кинематическая пара

Кинематическая пара представляет собой совокупность двух тел, при которой форма одного из тел позволяет определить полный ряд последовательных положений, свойственных другому телу. Звеньями называются тела, являющиеся составляющими пары. Кинематическая пара является подвижным сопряжением двух твердых звеньев, на которые ставятся условия связи, ограничивающие их относительное движение.

Произвольное из условий связи ликвидирует одну степень свободы, т. е. устраняя одно из шести самостоятельных относительных перемещений в пространстве. Относительно условий связи кинематические пары подразделяются на пять классов. Число степеней свободы определяется по формуле W = 6 – S. Оставшиеся относительные движения звеньев необходимы для разделения кинематических пар внутри каждого класса. Относительно характера соприкосновения звеньев кинематические пары делятся на низшие, обладающие контактом по поверхностям, и высшие (определяются контактом по линиям или в точках). Высшие кинематические пары допустимы всех пяти классов, имеют много видов. Низшие пары возможны только трех классов и шести видов.

Кинематические пары подразделяются на геометрически замкнутые пары, в которых постоянное соприкосновение поверхностей создается благодаря форме включенных элементов, и незамкнутые пары, созданные таким образом, что замыкание производится при помощи прижимающей силы – силового замыкания. Примером может служить силовое замыкание в кулачковом механизме.

Простые пары определяются как пары, у которых относительное движение одного звена относительно другого соотносится с относительным движением второго звена в соотношении с первым звеном.

Поступательной парой называется пара, в которой одно из тел способно создавать только поступательное движение относительно другого тела.

Примером поступательной пары может служить тело, оснащенное призматическим каналом, в который устанавливается призма.

Вращательной парой является цилиндрическая втулка и установленный в нее шип, который оснащается закраинами, ограничивающими шип и не позволяющими покинуть втулку.

Винтовая пара представляет собой сочетание винта и гайки, при этом шагом является расстояние, находящееся между нарезками винта по ориентированности оси винта.

Поступательная пара рассматривается в качестве винтовой пары с шагом, соответствующим бесконечности.

Вращательная пара определяется как винтовая шагом, равным нулю.

В прямоугольной системе координат может наблюдаться три поступательных движения, происходящих в направлениях трех осей координат, три вращательных – вокруг осей.

Высшие пары определяются как пары, не выполняющие свойство простых пар, например шкив и перекинутый через него ремень, соединение зубчатых колес, полная трехгранная призма, дуговой двухсторонник, эллиптический циркуль и т. д. Движение первого звена в звене второго является обращенным относительно движения второго звена в первом звене.

Условными кинематическими парами считаются подвижные сопряжения с некоторым количеством промежуточных тел качения, например шарикоподшипники и роликоподшипники, промежуточных деформируемых элементов, например безлюфтовые шарниры устройств с плоскими пружинами.

Кинематическая цепь

Кинематическая цепь представляет собой последовательное соединение звеньев в пары. В случае, когда последнее звено соединяется с первым звеном, кинематическая цепь называется замкнутой. Если же последнее звено не соединено с первым звеном, цепь считается открытой. Принудительная кинематическая замкнутая цепь определяется как цепь, имеющая одно звено неподвижное, приобретает определенность движения, которая свойственна механизму. Если в принудительной цепи одно звено задается неподвижным, то считается, что цепь поставлена на этом звене, при этом, если ставить принудительную цепь последовательно на каждое из звеньев, можно создать такое количество механизмов, которое соответствует количеству звеньев в цепи. Принудительной цепью является шарнирная четырехсторонняя фигура, включающая четыре стержня, которые объединены при помощи шарниров, являющихся вращательными парами.

Кинетостатика механизмов

Кинетостатика механизмов представляет собой одну из частей теории динамики машин и механизмов, основанную на методе силового расчета, который позволяет находить реакции элементов кинематических пар механизма при известном законе движения устройства.

При рассмотрении всех сил, которые прикладываются к звеньям механизма, присоединяют силы инерции, используя принцип Д’Аламбера, можно принять весь механизм как единое целое и отдельные его части как находящиеся в состоянии равновесия. Для задания сил, направленных на механизм, используют уравнение статики, составляются системы уравнений для отдельных составляющих механизма. Количество уравнений соответствует количеству неизвестных реакций. Такие системы получили название статически определимых. Проведение силового последовательного расчета механизма кинематических пар начинается с максимально удаленной группы относительно начального звена механизма. Векторное уравнение решается при помощи многоугольника, где реакция находится при помощи векторного уравнения равновесия сил на одном из звеньев. Исследование равновесия начального звена: находят реакцию, уравновешенный момент, который прикладывается к этому звену, для создания установленного закона движения начального звена. Для нахождения силы трения в кинематических парах используется система уравнений с добавочным независимым уравнением. Находятся реакции, затем определяются силы трения в парах, далее расчет производится еще раз с учетом сил трения в качестве внешних сил, которые прикладываются к звеньям, получая при повторном расчете как бы более точные реакции в первом приближении. Расчет также может повторяться, принимая силы трения как определенные. Для расчета многозвенных пространственных устройств используется такой же метод, при этом решение становится достаточно большим.

Кинетостатика механизмов широко используется при проведении проектировочных работ новых машин, направленных на точный расчет прочности создаваемых технических устройств.

Ковш (в технике)

Один из вариантов технического ковша представляет собой стальной или чугунный сосуд, вместимость которого определяется 480 т, внутренняя часть ковша обкладывается огнеупорным кирпичом. Используется для произведения транспортировки, разливки расплавленного металла, шлака, штейна, а также для хранения не на длительное время расплавленного металла, шлака, штейна.

Второй вариант ковша является ковшом, который устанавливается на землеройную, подъемно-транспортную машину, выполняя функцию рабочего органа для произведения захвата и отделения доли материала от общего его количества для произведения перемещения этой доли к зоне разгрузки.

Коленчатый вал

Коленчатый вал представляет собой деталь сложной конфигурации или узел деталей, характерный для составного вала, оснащается консолями для фиксирования шатунов, служащих для передачи плоско-поступательного движения коленчатому валу, который трансформирует это движение во вращательное, передавая вращение трансмиссии и приводным приспособлениям. Коленчатый вал является составным элементом кривошипно-шатунного механизма.

Назад Дальше