Материаловедение. Шпаргалка - Елена Буслаева 12 стр.


Низкоуглеродистую кремнистую сталь применяют для сооружения мостов и не подвергают термической обработке.

Сталь 55С2, 6 °C2 применяют для изготовления пружин и рессор. После закалки и отпуска эта сталь отличается высоким пределом прочности и упругости.

Марганец повышает твердость и прочность стали, увеличивает ее прокаливаемость и улучшает свариваемость. Легированной марганцевой сталью называют сталь, которая содержит не менее 1 % Мп. В практике применяют низколегированную и высоколегированную марганцевую сталь.

Широкое распространение получила высоколегированная сталь марки Г13, которая обладает очень высокой вязкостью и сопротивляемостью ударному истиранию: из нее изготовляют стрелки и крестовины железных дорог, козырьки землечерпательных машин.

Инструментальная легированная сталь. Для каждого вида инструмента необходимо применять сталь, наиболее подходящую по своим качествам к данным условиям работы.

Низколегированная сталь для режущего инструмента по своей режущей способности не отличается от углеродистой стали и применяется при небольших скоростях резания.

Распространенные марки низколегированной стали для режущих инструментов являются:

1) сталь марки Х – хромовая (для изготовления резцов, сверл);

2) сталь марки 9ХС – хромокремнистая (для изготовления резцов, сверл);

3) сталь марки В1 – вольфрамовая (для изготовления спиральных сверл, разверток).

42. Нержавеющие, теплостойкие и жаропрочные, хладостойкие, электротехнические и износостойкие стали

Коррозионная стойкость стали повышается, если содержание углерода снизить до минимально возможного количества и ввести легирующий элемент, образующий с железом твердые растворы, в таком количестве, при котором повысится электродный потенциал сплава. Сталь, стойкую против атмосферной коррозии, называют нержавеющей. Сталь или сплав, имеющие высокую стойкость при коррозионном воздействии кислот, солей, щелочей и других агрессивных сред, называют кислотостойкими.

Коррозия – это разрушение металлов из-за взаимодействия электрохимического взаимодействия их с окружающей средой. Конструкционные материалы обладают высокой коррозионной стойкостью. Углеродистые и низколегированные стали неустойчивы против коррозии в атмосфере, воде и других средах. Коррозионно-стойкими называют металлы и сплавы, которые способны сопротивляться коррозионному воздействию среды.

Хром – основной легирующий элемент, делающий сталь коррозионностойкой в окислительных средах.

Жаростойкость – это способность металлов и сплавов сопротивляться коррозионному воздействию газов при высоких температурах. Коррозионное воздействие газов приводит к окислению стали при высокой температуре. На интенсивность окисления влияют состав и строение оксидной пленки. Если пленка пористая, то окисление происходит интенсивно, если плотная – замедленно или вообще прекращается.

Для получения плотной оксидной пленки, которая препятствует проникновению кислорода вглубь стали, ее легируют хромом, кремнием или алюминием. Чем больше легирующего элемента в стали, тем выше ее жаростойкость.

Теплостойкость. Для инструментального материала она определяется наивысшей температурой, при которой он сохраняет свои режущие свойства. Теплостойкость применяемых инструментальных материалов составляет от 200 до 1500о С. По степени убывания теплостойкости материалы располагаются в следующем порядке: сверхтвердые, режущая керамика, твердые сплавы, быстрорежущие, легированные, углеродистые стали. Даже при воздействии в течении долгого времени температур высокие жаропрочные свойства должны оставаться на прежнем уровне. Металл горячих штампов должен оказывать устойчивое сопротивление отпуску.

Жаропрочность – это способность стали сопротивляться механическим нагрузкам при высоких температурах. К жаропрочным относят стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение длительного времени. Жаропрочные стали обычно одновременно и жаростойкие.

Ползучесть – это деформация, увеличивающаяся под длительным действием постоянной нагрузки и высокой температуры. Для углеродистых и легированных конструкционных сталей ползучесть наблюдается при температурах выше 350 °C.

Ползучесть характеризуется пределом ползучести, под которым понимают напряжение, вызывающее деформацию стали на определенную величину за определенное время при заданной температуре.

Жаропрочные сплавы. Развитие жаропрочных никелевых сплавов началось с небольших добавок титана и алюминия к обычному нихрому. Добавление менее 2 % титана и алюминия без термической обработки заметно повышает показатели ползучести нихрома при температурах около 700 °C.

Жаропрочные никелевые сплавы подразделяют на деформируемые и литейные. Жаропрочные свойства деформируемых сплавов формируются при термической обработке. Литейные жаропрочные никелевые сплавы по составу сходны с деформируемыми, но обычно содержат большее количество алюминия и титана.

Хладостойкость – способность металла оказывать сопротивление деформации и разрушению, которые могут возникнуть под воздействием низких температур.

Электротехническая сталь является тонколистовой мягнитномягкой сталью. Из нее изготавливают сердечники электротехнического оборудования. В состав данной стали входит кремний. Различают холоднокатаную и горячекатаную электротехническую сталь, а также динамную и трансформаторную. Для легирования стали электротехнической используют 0,5 % Al.

Износостойкая сталь. Для деталей, работающих в условиях абразивного износа, высоких давлений и ударов (траки гусеничных машин, щеки дробилок, переводные стрелки железнодорожных и трамвайных путей), применяют высокомарганцевую литую сталь 110Г13Л аустенитной структуры, содержащую 0,9 % С и 11,5 % Мп.

В литом состоянии структура стали состоит из аустенита и карбидов типа (Ре, Мп)3С, выделяющихся по границам аустенитных зерен, и ее прочность и ударная вязкость сильно снижены, поэтому литые детали подвергают закалке с нагревом до 1100 °C и охлаждению в воде. При такой температуре карбиды растворяются в аустените и сталь приобретает более устойчивую аустенитную структуру.

В условиях ударного воздействия и абразивного изнашивания в поверхностном слое стали образуются дефекты кристаллического строения (дислокации, дефекты упаковки), что приводит к поверхностному упрочнению. Повышение твердости и износостойкости в результате наклепа возможно при ударных нагрузках и холодной пластической деформации.

Из-за наклепа сталь 110Г13Л плохо обрабатывается резанием, поэтому детали или изделия из данной стали целесообразно изготовлять литьем без последующей механической обработки. Буква Л в конце марки этой стали означает "литейная".

43. Маркировка, структура, свойства и области применения цветных металлов и их сплавов

К цветным металлам относятся медь, алюминий, магний, титан, свинец, цинк и олово, которые обладают ценными свойствами и применяются в промышленности, несмотря на относительно высокую стоимость. Иногда, когда это возможно, цветные металлы заменяют черными металлами или неметаллическими материалами (например, пластмассами).

Выделяют следующие группы цветных металлов и сплавов: легкие металлы и сплавы (с плотностью 3.0 г/см3); медные сплавы и специальные цветные сплавы – мельхиор, незильбер, драгоценные сплавы и т. д.

В промышленности по применению медь занимает одно из первых мест среди цветных металлов. Свойства меди – высокая пластичность, электропроводность, теплопроводность, повышенная коррозионная стойкость. Медь используется в электромашиностроении, изготовлении кабелей и проводов для передачи электроэнергии и служит основой для изготовления различных сплавов, широко применяемых в машиностроении.

Алюминий – легкий металл, который обладает высокой пластичностью, хорошей электропроводностью и коррозионной стойкостью. Применяется для изготовления электропроводов, посуды, для предохранения других металлов и сплавов от окисления путем плакирования. В машиностроении чистый алюминий применяется мало, потому что имеет невысокие механические свойства. Алюминий является основой для получения многих сплавов, широко применяемых в самолетостроении, авто– и вагоностроении, приборостроении. Алюминиевые сплавы бывают деформированными (упрочняемые при помощи термической обработки и не упрочняемые) и литейными. Дюралюминий – самый распространенный сплав, который используется в деформированном виде и укрепляется при помощи термической обработки.

Магний является наиболее распространенным металлом, имеет серебристо-белый цвет. Большое преимущество магния состоит в том, что это очень легкий металл. Главным недостатком является его малая стойкость против коррозии. Чистый магний не нашел распространения в технике, но применяется в качестве основы для производства легких сплавов.

Установлены следующие марки цветных металлов (ГОСТ):

алюминий – АВ1, АВ2, АОО, АО, А1, А2 и А3;

медь – МО, М1, М2, МЭ, М4;

олово – 01, 02, ОЭ и 04; свинец – СВ, СО, С1, С2, С3, С4;

цинк – ЦВ, ЦО, Ц1, Ц2, Ц3, Ц4;

магний – Мг1, Мг2.

Латуни. По сравнению с чистой медью латуни имеют большую прочность, пластичность и твердость, они более жидкотекучи и коррозионностойки.

Кроме простой латуни, применяются специальные латуни с добавками железа, марганца, никеля, олова, кремния. Количество легирующих компонентов в специальных латунях не превышает 7–8%. Специальные латуни имеют повышенные механические свойства; некоторые из них по прочности не уступают среднеуглеродис-той стали.

По ГОСТу латуни обозначаются буквой Л и цифрой, которая указывает количество меди в сплаве.

Обозначение легирующих компонентов следующее: Ж – железо; Н – никель; О – олово; К – кремний; С – свинец. Количество легирующего компонента указывается цифрами.

Латуни бывают литейные (применяемые для фасонного литья) и подвергаемые обработке давлением. Латунь применяют для изготовления листов, проволоки, гильз, штампованной арматуры, посуды.

Бронзы бывают: оловянные, алюминиевые, кремнистые, никелевые. Оловянные бронзы обладают высокой коррозионной стойкостью, хорошей жидкотекучестью и повышенными антифрикционными свойствами. Из них изготовляют отливки. Простые оловянные бронзы применяются редко, так как введением дополнительных элементов (цинка, свинца, никеля) можно достигнуть лучших свойств при меньшем содержании дефицитного олова.

По ГОСТу оловянные бронзы маркируются буквами БрО и цифрой, которая показывает содержание олова; последующие буквы и цифры показывают наличие и количество в бронзе дополнительных элементов. Для обозначения дополнительных элементов применяют те же буквы, что и при маркировке специальной латуни; цинк обозначается буквой Ц, а фосфор буквой Ф.

Олово – дорогой металл и в практике применяется редко. Заменителями оловянной бронзы являются алюминиевая, кремнистая, марганцовая и другие бронзы.

Алюминиевая бронза применяется с содержанием до 11 % А1. По структуре бронза в основном (до 9,7 % А1) однофазная и представляет твердый раствор алюминия в меди. По механическим свойствам алюминиевая бронза лучше оловянной, она обладает пластичностью, коррозийной стойкостью и износоупорностью.

Недостаток – большая усадка при охлаждении от жидкого состояния, а также в легком образовании окислов алюминия в жидкой бронзе, что ухудшает ее жидкотекучесть. Дополнительные элементы (железо, марганец) повышают ее механические свойства. Кремнистая бронза относится к однородным сплавам – твердым растворам, обладает высокими механическими и литейными свойствами. Заменяет оловянную бронзу. Для повышения свойств в кремнистые бронзы вводятся марганец, никель.

44. Алюминий; влияние примесей на свойства алюминия; деформируемые и литейные алюминиевые сплавы

Алюминий отличают низкая плотность, высокие тепло– и электропроводность, хорошая коррозийная стойкость во многих средах за счет образования на поверхности металла плотной оксидной пленки Аl203. Технический отожженный алюминий АДМ упрочняется холодной пластической деформацией.

Алюминий высокопластичен и легко обрабатывается давлением, однако при обработке резанием возникают осложнения, одной из причин которых является налипание металла на инструмент.

В зависимости от того, какие примеси присутствуют в алюминии, наблюдаются изменения его коррозионных, физических, механических и технологических свойств. Большинство примесей отрицательно сказываются на электропроводности алюминия. Наиболее распространенные примеси: железо, кремний. Железо, наряду с электропроводностью, снижает пластичность и коррозионную стойкость, повышает прочностные свойства алюминия. Присутствие железа в сплавах алюминия с кремнием и магнием отрицательно сказывается на свойствах сплава. Только в тех сплавах алюминия, где присутствует никель, железо считается полезной примесью.

Наиболее распространенная примесь в алюминиевых сплавах – кремний. Данный металл, а также медь, магний, цинк, марганец, никель и хром вводят в алюминиевые сплавы как основные компоненты. Соединения CuAl2, Mg2Si, CuMgAl2– эффективно упрочняют алюминиевые сплавы.

Основные легирующие элементы в алюминиевых сплавах. Марганец повышает коррозионную стойкость. Кремний является основным легирующим элементом в ряде литейных алюминиевых сплавов (силуминов), поскольку он участвует в образовании эвтектики.

Ni, Ti, Сг, Fе повышают жаропрочность сплавов, затормаживая процессы диффузии и образуя стабильные сложнолегированные упрочняющие фазы. Литий в сплавах способствует возрастанию их модуля упругости. Вместе с тем магний и марганец снижают тепло– и электропроводность алюминия, а железо – его коррозионную стойкость.

Маркировка алюминиевых сплавов. В настоящее время одновременно применяют две маркировки сплавов: старую буквенно-цифровую и новую цифровую. Наряду с этим имеется буквенно-цифровая маркировка технологической обработки полуфабрикатов и изделий, качественно отражающая механические, химические и другие свойства сплава.

Классификация алюминиевых сплавов. Алюминиевые сплавы в основном подразделяются на деформируемые и литейные, поскольку в производстве порошковых сплавов и композиционных материалов используются процессы пластической деформации и литья.

Алюминиевые сплавы разделяют по способности упрочняться термической обработкой на упрочняемые и не упрочняемые. Они могут подвергаться гомогенизационному, рекристализационному и разупрочняющему отжигу.

Хорошим сочетанием прочности и пластичности отличаются сплавы системы Аl-Сu-Мg – дюралюмины Д1, Д16, Д18, Д19 и др. Термическая обработка упрочняет дюралюмины, повышает их свариваемость точечной сваркой. Они удовлетворительно обрабатываются резанием, но имеют склонность к межкристаллитной коррозии после нагрева. Значительное повышение коррозионной стойкости сплавов достигается плакированием.

В авиации дюралюмины применяют для изготовления лопастей воздушных винтов (Д1), силовых элементов конструкций самолетов (Д16, Д19).

Высокопрочные сплавы системы Аl-Zn-Мg-Сu (В93, В95, В96Ц) характеризуются большими значениями временного сопротивления (до 700 МПа). При этом достаточная пластичность, трещиностойкость и сопротивление коррозии достигаются режимами коагуляционного ступенчатого старения (Т2, ТЗ), а также применением сплавов повышенной (В95кч) и особой (В95оч) чистоты.

Высокомодульный сплав 1420 обладает благодаря легированию алюминия литием и магнием (система Аl-М–Li) пониженной (на 11 %) плотностью и одновременно повышенным (на 4 %) модулем упругости.

Ковочные сплавы АК6 и АК8 (система Аl-М–Si-Cu) при горячей обработке давлением обладают высокой пластичностью. Они удовлетворительно свариваются, хорошо обрабатываются резанием, но под напряжением склонны к коррозии. Для обеспечения коррозионной стойкости детали из сплавов АК6 и АК8 анодируют или покрывают лакокрасочными материалами. Из ковочных сплавов изготавливают ковкой и штамповкой детали самолетов, работающие под нагрузкой. Эти сплавы способны работать при криогенных температурах.

Жаропрочные алюминиевые сплавы системы А1-Си-Мп (Д20, Д21) и Аl-Сu-Мg-Fе-Ni (АК4-1) применяют для изготовления деталей (поршни, головки цилиндров, диски), работающих при повышенных температурах (до 300 °C). Жаропрочность достигается за счет легирования сплавов никелем, железом и титаном, затормаживающими диффузионные процессы и образующими сложнолегированные мелкодисперсные упрочняющие фазы, устойчивые к коагуляции при нагреве. Сплавы обладают высокой пластичностью и технологичностью в горячем состоянии.

Литейные алюминиевые сплавы.

Основные требования к сплавам для фасонного литья – это сочетание хороших литейных свойств (высокой жидкотекучести, небольшой усадки, малой склонности к образованию горячих трещин и пористости) с оптимальными механическими и химическими (сопротивление коррозии) свойствами. Лучшими литейными свойствами обладают сплавы эвтектического состава.

45. Медь; влияние примесей на свойства меди. Латуни, бронзы, медно-никелевые сплавы

Медь – это металл красного, в изломе розового цвета, имеет температуру плавления 1083о С. Кристаллическая решетка ГЦК с периодом а 0,31607 ям. Плотность меди 8,94 г/см3. Медь обладает высокими электропроводимостью и теплопроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм·м.

Марки меди: М00 (99,99 % Си), МО (99,97 % Си), М1 (99,9 % Си), М2 (99,7 % Си), М3 (99,50 % Си). Присутствующие в меди примеси оказывают большое влияние на ее свойства.

По характеру взаимодействия примесей с медью их можно разделять на три группы.

1. Примеси, образующие с медью твердые растворы: Ni, Zn, Sb, Fе. Р и др. Эти примеси (особенно Sb) резко снижают электропроводимость и теплопроводность меди, поэтому для проводников тока применяют медь М0 и М1. Сурьма затрудняет горячую обработку давлением.

2. Примеси Pb, Bi и другие, практически не растворимые в меди, образуют в ней легкоплавкие эвтектики, которые, выделяясь по границам зерен, затрудняют обработку давлением.

При содержании 0,005 % Вi медь разрушается при горячей обработке давлением, при более высоком содержании висмута медь становится хладноломкой; на электропроводимость эти примеси оказывают небольшое влияние.

3. Примеси кислорода и серы, образующие с медью хрупкие химические соединения Сu2О и Сu2S, входящие в состав эвтектики. Если кислород находится в растворе, то он уменьшает электропроводимость, а сера не влияет на нее. Сера улучшает обрабатываемость меди резанием, а кислород, если он присутствует в меди, образует закись меди и вызывает "водородную болезнь".

При нагреве меди в атмосфере, содержащей водород, происходит его диффузия в глубь меди. Если в меди присутствуют включения Си2О, то они реагируют с водородом, в результате чего образуются пары воды. Две основные группы медных сплавов: латуни – сплавы меди с цинком; бронзы – сплавы меди с другими элементами.

Назад Дальше