В 1980х и ранних 1990х большинство струнных теоретиков имели то, что казалось убедительным ответом. Они утверждали, что имелись попытки сформулировать фундаментальную теорию материи, основанную на каплеобразных составляющих, причем среди других этим занимались такие иконы физики двадцатого столетия, как Вернер Гейзенберг и Поль Дирак. Но их труд, точно так же, как многие последующие исследования, показал, что экстремально трудно разработать теорию, основываясь на мельчайших каплях, которые удовлетворяют наиболее базовым физическим требованиям, – например, обеспечению того, что все квантовомеханические вероятности лежат между 0 и 1 (не могут иметь смысла отрицательные вероятности или вероятности больше единицы), и запрету обмена информацией быстрее света. Для точечных частиц полвека исследований, начатых в 1920е, показали, что эти условия могут быть удовлетворены (пока гравитация игнорировалась). А к 1980м более чем десятилетнее исследование Шварца, Шерка, Грина и других установило, к удивлению большинства исследователей, что условия могут также удовлетворяться для одномерных составляющих, струн (с необходимо включенной гравитацией). Но казалось невозможным перейти к фундаментальным составляющим с двумя или более пространственными измерениями. Причина, коротко говоря, в том, что число симметрий, соблюдаемых уравнениями, достигает сильного максимума для одномерных объектов (струн) и круто падает дальше. Симметрии здесь более абстрактны, чем те, что обсуждались в Главе 8 (они связаны с тем, как уравнения изменяются, если мы во время изучения движения струны или составляющей более высокой размерности будем увеличивать или уменьшать масштаб, неожиданно и произвольно меняя разрешение наших наблюдений). Эти трансформации оказываются критическими для формулирования физически осмысленного набора уравнений, и вне струн кажется, что требуемое богатство симметрий отсутствует.
Таким образом, это был второй шок для большинства струнных теоретиков, когда статья Виттена и лавина последующих результатов привели к осознанию, что теория струн и схема М-теории, частью которой она сегодня является, содержат иные ингредиенты, кроме струн. Анализ показал, что имеются двумерные объекты, названные достаточно естественно мембранами (другое возможное значение буквы "М" в М-теории) или – в соответствии с систематическим наименованием их более высокоразмерных родственниц – 2-бранами. Имеются объекты с тремя пространственными измерениями, названные 3-бранами. И, хотя все более трудно визуализировать это, анализ показывает, что имеются также объекты с р пространственными измерениями, где р может быть целым числом, меньшим 10, известные – без ограничения обозначений – как р-браны. Таким образом струны являются только одним из ингредиентов в струнной теории, а не единственной составляющей.
Эти другие ингредиенты избегали ранее теоретического исследования почти по тем же причинам, как и десятое пространственное измерение: приближенные струнные уравнения оказывались слишком грубыми, чтобы обнаружить их. В теоретическом контексте, который струнные теоретики исследовали математически, оказалось, что все р-браны существенно тяжелее, чем струны. А чем более массивным что-либо является, тем больше энергии требуется, чтобы произвести его. Но ограничения приближенных струнных уравнений – ограничения, встроенные в уравнения и хорошо известные всем струнным теоретикам, – таковы, что они становятся менее и менее точными, когда описываемые сущности и процессы включают в себя все больше и больше энергии. При экстремальных энергиях, существенных для р-бран, приближенные уравнения теряют точность, чтобы выявить браны, скрывающиеся в тени, и именно поэтому десятилетия все проходили мимо их существования в математических понятиях. Но с различными переформулировками и новыми подходами, обеспечиваемыми унифицированной схемой М-теории, исследователи смогли обойти стороной некоторые из предыдущих технических преград, и тогда в полном математическом рассмотрении они нашли целое богатство высокоразмерных составляющих.
Открытие того, что в струнной теории имеются другие составляющие, помимо струн, не делает недействительным или ненужным более ранние труды, как и открытие десятого пространственного измерения. Исследование показало, что если высокоразмерные браны являются намного более массивными, чем струны, – как бессознательно предполагалось в предыдущих исследованиях, – они имеют минимальное влияние на широкий диапазон теоретических вычислений. Но точно так же, как десятое пространственное измерение может не быть много меньше всех остальных, высокоразмерные браны могут не быть намного более тяжелыми. Имеется большое число обстоятельств, еще гипотетических, в которых масса высокоразмерной браны может быть на одном уровне с самой низкой массой колебательной моды струны, и в этом случае брана будет оказывать существенное влияние на итоговую физику. Например, моя собственная работа с Эндрю Строминджером и Дэвидом Моррисоном показала, что брана может оборачиваться вокруг сферической части формы Калаби-Яу, весьма похоже на то, как пластик вакуумной упаковки оборачивается вокруг грейпфрута; если эта часть пространства должна сжиматься, обернутая брана также будет сжиматься, вызывая снижение ее массы. Это снижение массы, как мы смогли показать, позволяет части пространства полностью сколлапсировать и открыть дыру – само пространство может рваться на части – в то время как обернутая брана обеспечивает, что при этом не будет катастрофических физических последствий. Я обсуждал эту разработку детально в Элегантной Вселенной и коротко вернусь к ней, когда мы будем обсуждать путешествия во времени в Главе 15, так что я не хочу заниматься дальнейшими деталями здесь. Но этот фрагмент проясняет, как высокоразмерные браны могут оказывать существенное влияние на физику теории струн.
Для нашей текущей области сосредоточения, однако, имеется другой глубокий способ, которым браны влияют на вид вселенной в соответствии с теорией струн/М-теорией. Огромное протяжение космоса – полнота пространства-времени, о котором мы осведомлены, – само может быть ничем иным, как гигантской браной. Наш мир может быть миром на бране.
Миры на бране
Проверка теории струн является проблематичной, поскольку струны ультрамалы. Но вспомним физику, которая определяет размер струны. Частица-переносчик гравитации – гравитон – находится среди колебательных мод струны с низшей энергией, и величина гравитационной силы, ей соответствующая, пропорциональна длине струны. Поскольку гравитация настолько слабая сила, длина струны должна быть мельчайшей; расчеты показывают, что она должна быть в пределах ста длин Планка или около того, чтобы гравитонная мода колебаний струны соответствовала гравитационной силе наблюдаемой величины.
Давая это объяснение, мы видим, что струны с высокой энергией не ограничиваются требованием малости, поскольку больше нет прямой связи с гравитоном (гравитон является модой колебаний низшей энергии, нулевой массы). Фактически, чем больше и больше энергии закачивается в струну, на первых порах она будет колебаться более и более неистово. Но после определенной точки добавочная энергия будет иметь иной эффект: она будет заставлять длину струны увеличиваться, и нет предела, до какой длины она может вырасти. Закачав в струну достаточно энергии, вы могли бы даже вырастить ее до макроскопического размера. С сегодняшней технологией мы никак не можем приблизиться к достижению этого, но возможно, что в обжигающе горячем, экстремально энергичном состоянии после Большого взрыва длинные струны производились. Если некоторые умудрились уцелеть до наших дней, они могли бы очень хорошо растянуться и быть явно видимыми через небо. Хотя вероятность этого невелика, возможно даже, что такие длинные струны могли бы остаться мельчайшими, но оставить детектируемый отпечаток на данных, которые мы получаем из пространства, возможно позволив теории струн однажды подтвердиться путем астрономических наблюдений.
Высокоразмерные р-браны также не обязаны быть мельчайшими, а поскольку они имеют больше измерений, чем струны, открываются качественно новые возможности. Когда мы рисуем длинную – возможно, бесконечно длинную – струну, мы воображаем длинный одномерный объект, который существует внутри трех больших пространственных измерений нашей повседневной жизни. Силовая линия растягивается так далеко, как глаза могут увидеть, обеспечивая обоснованный образ. Аналогично, если мы рисуем большую – возможно, бесконечно большую – 2-брану, мы воображаем большую двумерную поверхность, которая существует внутри трех больших пространственных измерений повседневного опыта. Я не знаю реалистичной аналогии, но нелепо гигантский движущийся киноэкран, экстремально тонкий, но высокий и широкий настолько, насколько глаза могут увидеть, предлагает визуальный образ, чтобы понять это. Когда мы подходим к большой 3-бране, однако, мы обнаруживаем себя в качественно новой ситуации. 3-брана имеет три измерения, так что, если она велика – возможно, бесконечно велика, – она заполнит все три большие пространственные измерения. Тогда как 1-брана и 2-брана, подобные силовой линии и киноэкрану, являются объектами, которые существуют внутри трех больших пространственных измерений, большая 3-брана будет занимать все пространство, о котором мы осведомлены.
Это поднимает интригующую возможность. Может быть, мы прямо сейчас живем внутри 3-браны? Подобно Белоснежке, чей мир существует внутри двумерного киноэкрана – 2-браны, – который сам находится внутри высокоразмерной вселенной (три пространственных измерения кинотеатра), может быть все, что мы знаем, существует внутри трехмерного экрана – 3-браны, – который сам располагается внутри высокоразмерной вселенной теории струн/М-теории? Может ли быть, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трехмерным пространством, на самом деле является особой трехмерной сущностью в теории струн/М-теории? Или, на более релятивистском языке, может ли быть, что четырехмерное пространство-время, разработанное Минковским и Эйнштейном, на самом деле является следом 3-браны, когда она эволюционирует через время? Короче говоря, может ли вселенная, которую мы знаем, быть браной?
Возможность, что мы живем внутри 3-браны – так называемый сценарий мира на бране – является самым последним поворотом в истории теории струн/М-теории. Как мы увидим, он обеспечивает качественно новый путь размышлений о теории струн/М-теории, с многочисленнымии далеко идущими разветвлениями. Существенной физикой является, что браны скорее подобны космическим застежками-липучками: в особых случаях, которые мы сейчас обсудим, они являются очень клейкими.
Клейкие браны и вибрирующие струны
Одной из мотиваций для введения термина "М-теория" является то, что мы теперь осознали, что "струнная теория" освещает только одну из многих составляющих теории. Теоретические исследования одномерных струн, обнаруженных за десятки лет до более точного анализа, открыли высокоразмерные браны, так что "теория струн" есть в некотором смысле исторический артефакт. Но даже если М-теория проявляет демократию, в которой представлены протяженные объекты различных размерностей, струны все еще играют центральную роль в нашей сегодняшней формулировке теории. С одной стороны, это совершенно ясно. Когда все высокоразмерные р-браны намного тяжелее струн, они могут быть игнорированы, как исследователи неосознанно делали с 1970х. Но имеется другая, более общая сторона, с которой струны являются первыми среди равных.
В 1995, вскоре после того, как Виттен анонсировал свой прорыв, Джо Полчински из Университета Калифорнии в Санта-Барбаре задумался. Годами раньше в статье, которую он написал с Робертом Лаем и Джин Дай, Полчински открыл интересную, хотя в некоторой степени неясную особенность теории струн. Мотивировка и обоснования Полчински были до некоторой степени техническими, и детали несущественны для нашего обсуждения, но его результат существенен. Он нашел, что в определенных ситуациях конечные точки открытых струн – вспомним, что это сегменты струн с двумя свободными концами, – не могут двигаться полностью свободно. Вместо этого, точно так же, как бусина на проволоке свободна двигаться, но должна следовать контуру проволоки, и точно так же, как пинбольный шарик свободен двигаться, но должен следовать контуру поверхности пинбольного стола, конечные точки открытой струны будут свободны в своем движении, но будут ограничены особыми формами или контурами в пространстве. В то время, как струна все еще будет свободна для колебаний, Полчински и его соратники показали, что ее конечные точки будут "прилипшими" или "пойманными" внутри определенных областей.
В некоторых ситуациях область может быть одномерной, в этом случае концы струны будут подобны двум бусинам, скользящим по проволоке, а сама струна будет подобна шнуру, соединяющему их. В других ситуациях область может быть двумерной, в этом случае концы струны будут очень похожи на два пинбольных шарика, связанных шнуром, катающихся вдоль пинбольного стола. Еще в других ситуациях область может иметь три, четыре или любое другое количество пространственных измерений, меньшее десяти. Эти результаты, как было показано Полчински, а также Петром Хофавой и Майклом Грином, помогли разрешить давно стоящую загадку в сравнении открытых и замкнутых струн, но в течение лет работа привлекала ограниченное внимание. В октябре 1995, когда Полчински завершил обдумывать эти более ранние достижения в свете новых открытий Виттена, все изменилось.
Вопрос, который статья Полчински оставила без полного ответа, мог возникнуть у вас во время чтения последнего параграфа. Если концы открытых струн приклеены внутри особых регионов пространства, что именно их там удерживает приклеенными? Проволоки и пинбольные столы имеют реальное существование, независимое от бусин или шариков, движение которых вдоль себя они ограничивают. А что можно сказать о регионах пространства, которыми ограничены концы открытых струн? Они заполнены некоторыми независимыми и фундаментальными ингредиентами струнной теории, такими, что бдительно зажимают концы открытых струн? Перед 1995, когда струнная теория мыслилась только как теория струн, не просматривалось ни одного кандидата на эту работу. Но после прорыва Виттена и инспирированного им стремительного потока результатов ответ стал для Полчински очевиден: если концы открытых струн ограничены в движении внутри некоторого р-мерного региона пространства, тогда этот регион пространства должен быть занят р-браной.*
(*) "Более точное наименование для этих клейких сущностей есть р-браны Дирихле или, для краткости, D-р-браны. Мы будем придерживаться более короткого названия р-брана".
Его расчеты показали, что вновь открытые р-браны имеют в точности правильные свойства, чтобы быть объектами, которые оказывают неразрушимый захват концов открытой струны, ограничивая их в движении внутри р-мерного региона пространства, который р-браны заполняют.
Чтобы лучше понять, что это означает, посмотрите на Рис. 13.2. На (а) мы видим пару 2-бран с множеством открытых струн, движущихся вокруг и вибрирующих, все концы которых ограничены в движении вдоль их соответствующей браны. Хотя это все более тяжело нарисовать, ситуация с более высокоразмерными бранами идентична. Концы открытых струн могут двигаться свободно по и внутри р-браны, но они не могут покинуть саму брану. Когда мы подходим к возможности движения вне браны, браны являются самыми липкими вещами, какие можно вообразить. Возможно также для одного конца открытой струны быть прилепленным к одной р-бране, а для ее другого конца быть приклеенным к другой р-бране, которая может иметь ту же размерность, что и первая (Рис. 13.2b), или не иметь (Рис. 13.2c).