Квантово мистическая картина мира. Структура реальности и путь человека - Михаил Заречный 5 стр.


Рис. 8

Эксперимент потребовал 8 лет подготовки и был закончен только в 1982 году.

Каждый переключатель представляет собой небольшой сосуд с водой, в котором ультразвук периодически возбуждает стоячие волны. Эти волны играют роль дифракционной решетки, способной отклонять падающие фотоны. При возбуждении стоячей волны фотон отклоняется на анализатор с одной ориентацией, а при "выключении" стоячей волны путь фотона лежит к другому анализатору с иной ориентацией. Время, за которое свет проходит расстояние между анализаторами (40 нс), превышает время, необходимое для переключения с одной ориентации на другую (10 нс).

Поскольку скорость распространения сигнала не может превышать скорости света, то, согласно классическому подходу, в данном случае воздействие на одну часть системы не может повлиять на другую ее часть. Поэтому выбор ориентации для каждого анализатора не может повлиять на результаты наблюдений на другом анализаторе.

Эксперимент Аспекта показал, что данные о корреляции фотонов полностью согласуются с предсказаниями квантовой механики и более чем на 5 стандартных отклонений отличаются от предельных значений, допускаемых теоремой Белла для любой локальной модели со скрытыми параметрами.

Подтверждение нелокальности окружающего нас мира недавно было получено и в условиях, когда различие между теориями возникает не только в статистических предсказаниях, как в эксперименте Аспекта, но и в каждом отдельном событии. Это стало возможным благодаря исследованию корреляций между тремя частицами в так называемых ГХЦ-состояниях . Модели, основанные на локальном реализме, предсказывали для этих состояний противоположный знак измеряемой величины, нежели предсказания квантовой механики. Эксперимент однозначно показал справедливость предсказаний КМ.

Выдающимся экспериментальным результатом последних лет является также доказательство наличия нелокальных квантовых корреляций не только в системах с небольшим числом частиц, но и в макроскопических системах с громадным (около 10 ) числом частиц.

Применительно к теме книги этот результат может означать, что любой объект остается в неразрывной связи с Целым вне зависимости от того, осознаёт он это или нет.

Ещё одно удивительное явление, связанное с нелокальностью, - квантовая телепортация , то есть возможность переноса на расстоянии квантового состояния одного объекта на другой объект.

Перемещения самого объекта при этом не происходит, передаются лишь свойства одного объекта другому. Разрушив квантовое состояние в одной точке пространства, мы можем создать точно такое же состояние в другой точке.

Это явление примечательно тем, что наряду с классическим каналом передачи информации в нём используется и нелокальный квантовый канал. Телепортация может быть осуществлена и в том случае, когда состояние телепортируемого объекта неизвестно.

Способ практической реализации этого эффекта был предложен в 1993 году группой Чарльза Беннета (IBM), а само явление впервые наблюдалось в работах австрийских исследователей, возглавляемых Антоном Цайлингером, а также итальянских под руководством Франческо Де Мартини.

Общая схема квантовой телепортации такова. Сначала требуется получить две коррелированные частицы. Затем проводится измерение состояния одной из них посредством взаимодействия с частицей, несущей информацию, которую нужно передать. Измерение стирает квантовую информацию в этой частице, однако в силу запутанности она немедленно оказывается на второй частице пары вне зависимости от ее удаленности. Эту информацию можно извлечь и передать другой частице, используя в качестве ключа результаты измерения, которые передаются по классическому (обычному) каналу связи.

В случае, когда телепортируемое состояние само по себе является запутанным, можно наблюдать еще более удивительный феномен. Представим, что в эксперименте типа показанного на рис. 6 запутанность пары фотонов не существует изначально, но может быть создана экспериментатором в результате использования эффекта квантовой телепортации. Очевидно, если мы запутанность не создаем, фотоны будут регистрироваться независимо друг от друга. В случае, когда запутанность фотонов создается до их регистрации, результат для нас также ясен: проведя измерение над одним фотоном пары, мы можем точно предсказать, каков будет результат измерения, проведенного над другим фотоном.

Однако что будет, если мы создадим запутанность между фотонами пары уже после их регистрации? Результат эксперимента поражает воображение - он ничем не отличается от того, как если бы мы создали запутанность фотонов до их регистрации.

Таким образом, более позднее по времени действие влияет на результат более раннего измерения! Этот парадокс, неразрешимый в рамках классического подхода, находится в точном соответствии с предсказаниями КМ.

Отметим, что и здесь нет мгновенной передачи информации: квантовая информация передается мгновенно, однако, чтобы перевести эту информацию в классическую, необходимо передать результаты классических измерений. Это не может быть сделано со скоростью, выше скорости света.

Однако принципиальной невозможности передачи сигналов со сверхсветовой скоростью, вполне возможно, нет. По крайней мере, сообщение извне светового конуса можно почувствовать мистически, в себе самом. Для этого принимающий сообщение должен иметь высокоразвитое сознание, позволяющее перемещаться по различным пространствам событий (об этом см. в следующих главах). Не исключено, что подобная передача информации возможна во время встреч во сне, которые может освоить почти каждый человек.

В заключение главы хочу сказать, что квантовая механика давно имеет дело не только с лабораторными опытами. Согласно имеющимся оценкам , 30 % национального продукта Соединённых Штатов базируется на изобретениях, ставших возможными благодаря квантовой механике. А сейчас уже имеются коммерческие предложения, использующие нелокальную связь между частицами: например, в предлагаемых на рынке системах квантовой криптографии, обеспечивающих абсолютную защиту связи . Так что сказанное еще как относится к тому миру, в котором мы живем. А о том, какие следствия из квантовой картины мира применимы к общим вопросам мироздания, мы поговорим далее.

Подведём итоги этой главы.

• Физическим системам нельзя приписать (по крайней мере, всегда) характеристики как объективно существующие и независимые от проводимых измерений. Характеристики объекта "создаются" наблюдателем; вне акта наблюдения состояние любого объекта во многом является неопределенным. Частицы, образованные когда-то в одном акте, остаются в замкнутой системе единым объектом, вне зависимости от того, на каком расстоянии они находятся, и как давно произошло их разделение. Если с одной из них что-то происходит, то другие мгновенно меняют свои наблюдаемые свойства, и это происходит без материального носителя взаимодействия. Такие объекты не локализованы где-либо и обычно называются нелокальными (или квантово-коррелированными) структурами. Как мы убедимся в следующей главе, для них понятия времени и пространства, причины и следствия могут терять смысл.

• В любой замкнутой системе когерентность состояний не разрушается, то есть суперпозиция не переходит в смесь, и сама система является нелокальной. Отдельные локальные объекты (например, частицы) могут наблюдаться в ней только "изнутри", при взаимодействии отдельных подсистем и при "взгляде" из отдельных подсистем (подробнее об этом позже).

• В замкнутой системе состояние каждой частицы может быть как квантово-коррелированным с состояниями остальных частиц в данной системе, так и нет. В первом случае говорят о запутанном (то есть связанном, квантово-коррелированном, взаимозависимом) состоянии, а во втором - о сепарабельном (независимом) состоянии подсистем.

• Наш мир в своей основе нелокален и не может быть описан теориями, основанными на локальности и детерминизме. Именно об этом свидетельствуют результаты опытов, направленных на проверку неравенств Белла, которые позволяют отличить предсказания квантовой механики от предсказаний локальной объективной теории.

Домашнее задание будет таким. Я сейчас расскажу об эффектном эксперименте, идея которого была предложена в 1978 году Дж. Уилером и который в дальнейшем был осуществлен несколькими группами ученых в середине 80-х годов. Он известен как эксперимент с отложенным выбором.

Вашей задачей будет предсказать его результаты.

Михаил Заречный - Квантово-мистическая картина мира. Структура реальности и...

Рис. 9

Поток единичных фотонов (см. рис. 9) падает на расщепитель луча, представляющий собой обыкновенное полупрозрачное зеркало.

Выберет ли фотон определенный путь, А или А '? Если это так, то он проявит свойства частицы, а мы будем с 50 %-й вероятностью регистрировать срабатывание то детектора А , то детектора А '.

А может быть, фотон пройдет одновременно по двум путям А и A ', и наши детекторы зафиксируют интерференционную картину, наподобие картины при дифракции электрона на двух щелях?

Добавим в эксперимент изюминку, в силу которой он и получил название эксперимента с отложенным выбором.

Поставим переключатель, так называемую ячейку Поккельса, которая при включении способна практически мгновенно перенаправить летящий по пути B фотон в еще один приготовленный нами фотодетектор.

Будем включать ячейку Поккельса тогда, когда фотон уже прошел через расщепитель. То есть в этом эксперименте фотон не знает заранее, как ему следует себя вести: как частице, выбрав какой-то определенный маршрут, или как нелокальному объекту, перемещаясь сразу двумя путями.

Какую картину мы будем наблюдать?

Глава 4. Пространство и время

Когда меня спрашивают, что такое время, я этого не знаю. Но когда меня не спрашивают, я это знаю.

Августин Блаженный

Проверьте себя.

При выключенной ячейке Поккельса будет наблюдаться интерференционная картина, отвечающая одновременному прохождению фотона по двум путям. Фотон будет интерферировать сам с собой.

Этот результат ничем не отличается от интерференционной картины, наблюдаемой в двухщелевом эксперименте с электроном или другими частицами.

При включении ячейки Поккельса, в том числе в момент, когда фотон уже прошел через расщепитель, произойдет превращение (редукция) суперпозиционного состояния двух возможных траекторий в состояние смеси, когда фотон как локальный объект летит либо по одному пути, либо по другому. Так происходит потому, что выполняется измерение, выделяющее одну из компонент суперпозиции. Тем самым определяется, по какому из возможных путей движется фотон.

Таким образом, экспериментатор способен заставить фотон стать частицей (и пройти по одному из путей) или вести себя как нелокальный объект и пройти двумя путями сразу. Всё зависит от способа наблюдения! Он может это сделать уже после взаимодействия фотона с расщепителем, поскольку расщепитель не фиксирует каких-либо состояний фотона и не разрушает квантовую суперпозицию.

Мы видим, что способ наблюдения является фильтром, который извлекает из состояния, существовавшего до измерения, одну из содержащихся в нём возможностей.

Сейчас мы с вами двинемся дальше и зададимся вопросом, вызывающим интерес у многих. Всегда ли можно ввести понятие времени? Можно ли использовать его для целостной (замкнутой) системы типа нашей Вселенной или любой замкнутой системы? Возможно, вы уже не удивитесь, что ответ однозначен - нет .

Прежде чем рассмотреть вопрос о существовании времени в тех или иных системах, сделаем краткий исторический обзор.

Согласно Ньютону, время отделено от пространства, дано Богом и вечно. Существуют Абсолютное Пространство и Абсолютное Время , на которые не влияет никто и ничто, они подобны арене, где происходят все остальные физические явления. Что бы ни происходило, они остаются неизменными. Эти представления о пространстве и времени, отделенных как от материи, так и друг от друга, пользовались и пользуются популярностью, ибо они просты, но в то же время в достаточной степени соответствуют подавляющему большинству практических задач.

Специальная теория относительности (СТО) Эйнштейна связала пространство и время в единое пространство-время, в котором временные интервалы и даже последовательность событий для разных наблюдателей могут выглядеть по-разному. Например, СТО утверждает, что часы в самолете идут медленнее часов на земле, и это, как и другие следствия СТО, экспериментально доказано. "Образование" единого пространства - времени возможно благодаря постоянству скорости света: раз скорость света не зависит от скорости источника, его испускающего, и одинакова во всех системах отсчета (это экспериментальный факт!), то единица длины (например, метр) задает и единицу времени (время, за которое свет проходит один метр, или метр светового времени). А из этого вытекает возможность математических структур, описывающих взаимозависимость пространства и времени.

Общая теория относительности (ОТО) идет дальше: она вводит динамическое понятие пространства и времени , которое сложным образом изменяется при взаимодействии с материей. Гравитация понимается здесь как искривление времени и пространства. Это искривленное пространство-время больше не является только ареной, оно само принимает участие в происходящем. Предсказания ОТО многократно подтверждались при наблюдениях разнообразных космических объектов, они используются при расчетах траекторий полетов космических аппаратов в масштабах солнечной системы.

Квантовая теория гравитации (которая, впрочем, далека от завершения) идет еще дальше и утверждает, что время не есть нечто, имеющее самостоятельное бытие, его не существует вне объектов и полей. В современных теориях время и вовсе выпадает из уравнений. Это означает, что привычного нам пространства и времени в общем случае нет, эти понятия не являются исходными и общими для всех наблюдателей феноменами. Их возникновение должно быть выведено в рамках более глубокой теории .

Если быть последовательными до конца, то все теории, в которых изначально предусмотрено наличие внешних пространственно-временных координат, следует отнести к классической физике, которая имеет дело исключительно с независимыми друг от друга (так называемыми сепарабельными ) состояниями, когда вкладом квантовых корреляций можно пренебречь .

Назад Дальше