Рибосомы аппараты синтеза белка и полипептидных молекул. По локализации подразделяются на:
· свободныенаходятся гиалоплазме;
· несвободные или прикрепленныесвязаны с мембранами эндоплазматической сети.
Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка рибонуклеопротеида , которые образуются в ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной или информационной РНК объединяются в цепочки рибосом – полисомы . Свободные и прикрепленные рибосомы, помимо отличия в их локализации, отличаются определенной функциональной специфичностью: свободные рибосомы синтезируют белки для внутренних нужд клетки (белки-ферменты, структурные белки), прикрепленныесинтезируют белки "на экспорт".
Клеточный центр – цитоцентр, центросома, центриоли. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
· диплосомы;
· центросферы.
Диплосома состоит из двух центриолей – материнской и дочерней, расположенных под прямым углов друг к другу. Каждая центриоль состоит из микротрубочек, образующих структуру в виде полого цилиндра (диаметром 0,2 мкм, длиной 0,3–0,5 мкм). Микротрубочки с помощью "ручек" объединяются в триплеты (по три трубочки), образуя 9 триплетов.
Центросфера бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиально отходят микротрубочки (лучистая сфера).
Функции цитоцентра:
· образование веретена деления в профазе митоза;
· положение центриолей в некоторых эпителиальных клетках предопределяется их полярную дифференцированность;
· участие в формировании микротрубочек клеточного каркаса;
· в реснитчатых эпителиальных клетках центриоли являются базальными тельцами ресничек.
Микротрубочки полые цилиндры (внешний диаметр – 24 нм, внутренний – 15 нм), являются самостоятельными органеллами, образуя цитоскелет , или же входят в состав других органелл (центриолей, ресничек, жгутиков). Стенка микротрубочки состоит из глобулярного белка тубулина , который состоит из отдельных округлых образований – глобул , диаметром 5 нм. Такие глобулы могут находиться в гиалоплазме в свободном состоянии или же, под влиянием определенных факторов, соединяться между собой и формировать микротрубочки, а затем снова распадаться. Так формируются, а затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако, в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса , который поддерживает форму клетки, обуславливает определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки тубулины не обладают способностью к сокращению, а следовательно и микротрубочки не сокращаются. Однако в составе ресничек и жгутиков происходит взаимодействие между микротрубочками и их скольжением относительно друг друга, что и обеспечивает движение ресничек и жгутиков.
Микрофибриллы или промежуточные филаменты, представляют собой тонкие (10 нм) неветвящиеся нити, локализующиеся преимущественно в кортикальном (подмембранном) слое цитоплазмы. Они состоят из белка, но разного в разных клетках (в эпителиальных клетках кератина , в фибробластах виментина , в мышечных клетках десмина и другие). Функциональная роль микрофибрилл состоит в участии, наряду с микротрубочками, в формировании клеточного каркаса, выполняя опорную функцию. В некоторых клетках (эпидермоциты кожи) микрофибриллы объединяются в пучки и образуют тонофибриллы, которые рассматриваются как специальные органеллы, выполняющие опорную роль.
Микрофиламенты еще более тонкие нитчатые структуры (5–7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина), неодинаковых в разных клетках. Локализуются преимущественно в кортикальном слое цитоплазмы. В совокупности микрофиламенты составляют сократительный аппарат клетки , обеспечивающий различные виды движений:
· перемещение органелл,
· ток гиалоплазмы,
· изменение клеточной поверхности,
· образование псевдоподий и перемещение клетки.
Скопление микрофиламентов в мышечных волокнах образует специальные органеллы – миофибриллы .
8. Включения – непостоянные структурные компоненты цитоплазмы.
Классификация включений:
· трофические;
· секреторные;
· экскреторные;
· пигментные.
В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения:
· медикаментозные,
· частички угля,
· кремния и так далее.
Трофические включения – лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения – секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения – вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения – меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин – черный или коричневый, гемоглобин – желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин – в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности.
ЛЕКЦИЯ 3. Цитология. Ядро. Репродукция клеток
...
1 Структурные элементы интерфазного ядра
2. Жизненный цикл клетки
3. Репродукция клеток
4. Реакция клеток на внешнюю среду
В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными (постклеточными) образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки. В подавляющем большинстве клеток содержится одно ядро, но встречаются двуядерные и даже многоядерные клетки. Форма ядра в большинстве клеток круглая (сферическая) или овальная. В некоторых клетках ядра имеют вытянутую или палочковидную форму. В зернистых лейкоцитах ядро подразделяется на сегменты (сегментоядерные лейкоциты). Локализуется ядро обычно в центре клетки, но в клетках эпителиальных тканей ядра нередко сдвинуты к базальному полюсу.
1. Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе . В период деления клетки (в период митоза или мейоза ) одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
· хроматин;
· ядрышко;
· кариоплазма;
· кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20–25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
· эухроматин – рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
· гетерохроматин – компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.
По химическому строению хроматин состоит из:
· дезоксирибонуклеиновой кислоты (ДНК) 40 %;
· белков около 60 %;
· рибонуклеиновой кислоты (РНК) 1 %.
Ядерные белки представлены формами:
· щелочными или гистоновыми белками80-85 %;
· кислыми белками15-20 %.
Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине. В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.
Ядрышко – сферическое образование (1–5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом. Микроскопически в ядрышке различают:
· фибриллярный компонент – локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
· гранулярный компонент – локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
В профазе митоза , когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.
Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Кариолемма (нуклеолемма) – ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
Кариолемма состоит из двух билипидных мембран – внешней и внутренней ядерной мембраны , разделенных перинуклеарным пространством, шириной от 25 до 100 нм. В кариолемме имеются поры, диаметром 80–90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрыт особым структурным образованием – комплексом поры , который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.
Функции ядер соматических клеток:
· хранение генетической информации, закодированной в молекулах ДНК;
· репарация (восстановление) молекул ДНК после их повреждения с помощью специальныхрепаративных ферментов;
· редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
· передача генетической информации дочерним клеткам во время митоза;
· реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтезаинформационной, рибосомальной и транспортной РНК.
Функции ядер половых клеток:
· хранение генетической информации;
· передача генетической информации при слиянии женских и мужских половых клеток.
2. Клеточный, или жизненный, цикл клетки – это время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:
· часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);
· редко делящиеся клетки (клетки печени – гепатоциты);
· неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).
Жизненный цикл у этих клеточных типов различен.
Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом . Такой клеточный цикл подразделяется на два основных периода:
· митоз или период деления;
· интерфаза – промежуток жизни клетки между двумя делениями.
3. Способы размножения (репродукции) клеток
Различают два основных способа размножения клеток:
· митоз (кариокенез) – непрямое деление клеток, которое присуще в основном соматическим клеткам;
· мейоз или редукционное деление – характерно только для половых клеток.
В литературе нередко описывают третий способ деления клеток – амитоз или прямое деление клеток, которое осуществляется посредством перетяжки ядра и цитоплазмы, с образованием двух дочерних клеток или одной двуядерной. Однако в настоящее время принято считать, что прямой способ деления характерен только для старых и дегенерирующих клеток и является отражением патологии клетки. Возможен четвертый тип репродукции клетки – эндорепродукция , характеризуется увеличением объема клетки, увеличением количеством ДНК в хромосомах, увеличивается количество функциональных органелл. Клетка является гипертрофированной, но к увеличению числа клеток эндорепродукция не приводит, а лишь повышается функциональная активность клеток. Она наблюдается в клетках печенигепатоцитах, в эпителии мочевого пузыря.
Отмеченные выше два основных периода в жизненном цикле часто делящихся клеток (митоз и интерфаза) в свою очередь подразделяются на фазы или периоды. Митоз подразделяется на 4 фазы:
· профаза;
· метофаза;
· анафаза;
· телофаза.
В каждой фазе происходят определенные структурные преобразования.
Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид , исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.
В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.
Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.
Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомиейперетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.
Интерфаза подразделяется на 3 периода:
· J1, или пресинтетический;
· S, или синтетический;
· J2, или постсинтетический.
Каждый период характеризуется прежде всего некоторыми функциональными особенностями. В J1 (пресинтетическом) периоде происходит:
· усиленное формирование синтетического аппарата клетки – увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);
· усиление синтеза белков, необходимых для роста клетки;
· подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.
Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
J2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления .
Описанные закономерности жизненного цикла характерны прежде всего для часто делящихся клеток. Однако клетки некоторых тканей (например, клетки печеночной ткани – гепатоциты), по выходе из митоза, вступают в так называемый J0-период , во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Однако при определенных обстоятельствах (при поражении или удалении части печени) они вступают в нормальный клеточный цикл, то есть в S-период, синтезируют ДНК, а затем митотически делятся. Такие клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период .