· репаративная регенерация – восстановление тканей и органов после их повреждения (травмы, воспаления, хирургического воздействия и так далее).
· Уровни регенерации – соответствуют уровням организации живой материи:
· клеточный (внутриклеточный);
· тканевой;
· органный.
Способы регенерации:
· клеточный способразмножением (пролиферацией) клеток;
· внутриклеточный способвнутриклеточное восстановление органелл, гипертрофия, полиплоидия;
· заместительный способзамещение дефекта ткани или органа соединительной тканью, обычно с образованием рубца, например: образование рубцов в миокарде после инфаркта миокарда.
Факторы регулирующие регенерацию:
· гормоны – биологически активные вещества;
· медиаторы – индикаторы метаболических процессов;
· кейлоны – это вещества гликопротеидной природы, которые синтезируются соматическими клетками, основная функцияторможение клеточного созревания;
· антагонисты кейлонов – факторы роста;
· микроокружение любой клетки.
4. Интеграция тканей
Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов , в которых происходит интеграция (объединение) нескольких тканей. Механизмы интеграции: межтканевые (обычно индуктивные) взаимодействия, эндокринные влияния, нервные влияния. Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань. При заболеваниях органов вначале обычно поражается одна ткань, что затем может сказаться и на состоянии других тканей, благодаря индуктивным межтканевым взаимодействиям.
Эпителиальные ткани или эпителий образуют внешние и внутренние покровы организма, а также большинство желез.
Функции эпителиальной ткани:
· защитная (барьерная);
· секреторная (секретирует ряд веществ);
· экскреторная (выделяет ряд веществ);
· всасывательная (эпителий желудочно-кишечного тракта, полости рта).
Структурно-функциональные особенности эпителиальных тканей:
· эпителиальные клетки всегда располагаются пластами;
· эпителиальные клетки всегда располагаются на базальной мембране;
· эпителиальные ткани не содержат кровеносных и лимфатических сосудов, исключение, сосудистая полоска внутреннего уха (кортиев орган);
· эпителиальные клетки строго дифференцированы на апикальный и базальный полюс;
· эпителиальные ткани имеют высокую регенераторную способность;
· в эпителиальной ткани имеется преобладание клеток над межклеточным веществом или даже его отсутствие.
Структурные компоненты эпителиальной ткани:
I. Эпителиоциты – являются основными структурными элементами эпителиальных тканей. Располагаются в эпителиальных пластах вплотную и связаны между собой различными типами межклеточных контактов:
· простыми;
· десмосомами;
· плотными;
· щелевидными (нексусами).
К базальной мембране клетки прикрепляются посредством полудесмосом. В различных эпителиях, а часто и в одном типе эпителия, содержатся разные типы клеток (несколько клеточных популяций). В большинстве эпителиальных клеток ядро локализуется базально, а в апикальной части присутствует секрет, который вырабатывает клетка, в середине расположены все остальные органеллы клетки. Подобная характеристика каждого типа клеток будет дана при описании конкретного эпителия.
II. Базальная мембрана – толщина около 1 мкм, состоит из:
· тонких коллагеновых фибрилл (из белка коллагена 4 типа);
· аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.
5. Классификация эпителиальных тканей:
· покровные эпителии – образующие внешние и внутренние покровы;
· железистые эпителии – составляющие большинство желез организма.
Морфологическая классификация покровных эпителиев:
· однослойный плоский эпителий (эндотелий – выстилает все сосуды; мезотелий – выстилает естественные полости человека: плевральную, брюшную, перикардиальную);
· однослойный кубический эпителий – эпителий почечных канальцев;
· однослойный однорядный цилиндрический эпителий – ядра располагаются на одном уровне;
· однослойный многорядный цилиндрический эпителий – ядра располагаются на разных уровнях (легочный эпителий);
· многослойный плоский ороговевающий эпителий – кожа;
· многослойный плоский неороговевающий эпителий – полость рта, пищевод, влагалище;
· переходный эпителий – форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь.
Генетическая классификация эпителиев (по Н. Г. Хлопину):
· эпидермальный тип, развивается из эктодермы – многослойный и многорядный эпителий, выполняет защитную функцию;
· энтеродермальный тип, развивается из энтодермы – однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ;
· целонефродермальный тип – развивается из мезодермы – однослойный плоский эпителий, выполняет барьерную и экскреторную функции;
· эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга;
· ангиодермальный тип – эндотелий сосудов, развивается из мезенхимы.
Железистый эпителий образует подавляющее большинство желез организма. Состоит из:
· железистых клеток – гландулоцитов;
· базальной мембраны.
Классификация желез:
I. По количеству клеток:
· одноклеточные (бокаловидная железа);
· многоклеточные – подавляющее большинство желез.
II. По способу выведения секрета из железы и по строению :
· экзокринные железы – имеют выводной проток;
· эндокринные железы – не имеют выводного протока и выделяют инкреты (гормоны) в кровь и лимфу.
III. По способу выделения секрета из железистой клетки:
· мерокриновые – потовые и слюнные железы;
· апокриновые – молочная железа, потовые железы подмышечных впадин;
· голокриновые – сальные железы кожи.
IV. По составу выделяемого секрета:
· белковые (серозные);
· слизистые;
· смешанныебелково-слизистые;
· сальные.
V. По источникам развития:
· эктодермальные;
· энтодермальные;
· мезодермальные.
VI. По строению:
· простые;
· сложные;
· разветвленные;
· неразветвленные.
Экзокринные железы состоят из концевых или секреторных отделов и выводных протоков. Концевые отделы могут иметь форму альвеолы или трубочки. Если в выводной проток открывается один концевой отдел – железа простая неразветвленная (альвеолярная или трубчатая). Если в выводной проток открываются несколько концевых отделов – железа простая разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая). Если главный выводной проток разветвляется – железа сложная , она же разветвленная (альвеолярная, трубчатая или альвеолярно-трубчатая).
Фазы секреторного цикла железистых клеток:
· поглощение исходных продуктов секретообразования;
· синтез и накопление секрета;
· выделение секрета (по мерокриновому или апокриновому типу);
· восстановление железистой клетки.
Примечание: клетки секретирующие по голокриновому типу (сальных желез) полностью разрушаются, а из камбиальных (ростковых) клеток образуются новые железистые сальные клетки.
ЛЕКЦИЯ 6. Кровь и лимфа
...
1. Функция и состав крови
2. Структурная и функциональная характеристика эритроцитов
3. Структурная и функциональная характеристика лейкоцитов
4. Структурная и функциональная характеристика агранулоцитов
5. Возрастные особенности крови
6. Функции и состав лимфы
1. Кровь и лимфа – это ткани внутренней среды организма, они является разновидностью соединительной ткани.
У данных видов тканей имеются следующие особенности: мезенхимальное происхождение, большой удельный вес межуточного вещества, большое разнообразие структурных компонентов.
Функции крови делятся на:
· транспортная;
· трофическая;
· дыхательная;
· защитная;
· экскреторная;
· регуляция гомеостаза.
Составные компоненты крови:
· клетки – форменные элементы;
· жидкое межклеточное вещество – плазма крови.
Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови – печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма – 55–60 %, форменные элементы – 40–45 %. Плазма крови состоит из воды на 90–93 % и содержащихся в ней веществ – 7-10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы – транспорт растворимых веществ.
В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования – эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами .
Классификация форменных элементов:
эритроциты;
тромбоциты;
лейкоциты.
Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула . Гемограмма – количественное содержание форменных элементов крови в одном литре или одном миллилитре.
Гемограмма взрослого человека:
I. эритроцитов:
· у женщины – 3,7–4,9 млн в литре;
· у мужчины – 3,9–5,5 млн в литре;
· II. тромбоцитов 200–400 тыс. в литре;
· III. лейкоцитов 3,8–9,0 тыс. в литре.
2. Эритроциты преобладающая популяция форменных элементов крови. Морфологические особенности:
· не содержит ядра;
· не содержит большинства органелл;
· цитоплазма заполнена пигментным включением – гемоглобином: гемжелезо, глобин-белок.
Размеры эритроцитов:
· Нормоциты 7,1–7,9 мкм (75 %);
· Макроциты больше 8 мкм (12,5 %);
· Микроциты меньше 6 мкм (12,5 %).
Форма эритроцитов:
· двояковогнутые диски – дискоциты (80 %);
· остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.
По насыщенности гемоглобином эритроциты различаются:
· нормохромные;
· гипохромные;
· гиперхромные.
Различают две формы гемоглобина:
· гемоглобин А;
· гемоглобин F – фетальный.
У взрослого человека гемоглобина А 98 %, гемоглобина F 2 %. У новорожденного ребенка гемоглобина А 20 %, гемоглобина F 80 %. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном, в селезенке, освобождающиеся из них железо используется созревающими эритроцитами. В периферической крови от 1 % до 5 % эритроцитов являются незрелыми и носят название ретикулоцитов. Их содержание отражает интенсивность эритроцитарного кроветворения и имеет важное диагностическое и прогностическое значение. Пойкилоцитоз – наличие в периферической крови большого количества эритроцитов разной формы. Анизоцитоз – наличие в периферической крови большого количества эритроцитов разного размера.
Функции эритроцитов:
· Дыхательная – транспорт газов (О2 и СО2);
· транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).
II. Тромбоциты или кровяные пластинки, представляют собой фрагменты цитоплазмы особых клеток красного костного мозга – мегакариоцитов.
Составные части тромбоцита:
· Гиаломер – основа пластинки, окруженная цитолеммой;
· Грануломер – зернистость, представленная специфическими гранулами, а также фрагментами зернистой эндоплазматической сети, рибосомами, митохондриями и другими.
Размеры тромбоцитов – 2–3 мкм, форма округлая, овальная, отростчатая. По степени зрелости тромбоциты подразделяются на:
· юные;
· зрелые;
· старые;
· дегенеративные;
· гигантские.
Продолжительность жизни тромбоцитов – 5–8 дней. Функции тромбоцитов: участие в механизмах свертывания крови посредством склеивания пластинок и образования тромба, разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.
3. Лейкоциты или белые кровяные тельца, ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов основана на:
· содержании гранул в цитоплазме;
· отношении к красителям по тинкториальным свойствам;
· степени зрелости клеток данного типа;
· морфологии и функции клеток;
· размера клеток.
Классификация лейкоцитов:
I. зернистые (гранулоциты) – нейтрофилы (65–75 %): юные (0–0,5 %); палочкоядерные (3–5 %); сегментоядерные (60–65 %);
эозинофилы (1–5 %);
базофилы (0,5–1,0 %);
II. незернистые (агранулоциты):
лимфоциты (20–35 %): Т-лимфоциты; В-лимфоциты;
моноциты (6–8 %).
Лейкоцитарная формула – это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов – 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.
I. Нейтрофильные лейкоциты , нейтрофилы – самая большая популяция лейкоцитов (65–75 %). Морфологические особенности нейтрофилов:
· сегментированное ядро;
· в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы – разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10–12 мкм.
По степени зрелости нейтрофилы подразделяются на:
· юные (метамиелоциты) 0–0,5 %;
· палочкоядерные 3–5 %;
· сегментоядерные (зрелые) 60–65 %.
Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. По нейтрофилам определяют половую принадлежность крови – по наличию у одного из сегмента околоядерного сателлита (придатка) в виде барабанной палочки (у женщин). Продолжительность жизни нейтрофилов 8 дней, из них 8-12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции.
Функции нейтрофилов:
· фагоцитоз бактерий;
· фагоцитоз иммунных комплексов (антиген-антитело);
· бактериостатическая и бактериолитическая;
· выделение кейлонов и регуляция размножения лейкоцитов.
II. Эозинофильные лейкоциты или эозинофилы. Содержание в норме 1–5 %, размеры в мазках 12–14 мкм. Морфологические особенности эозинофилов:
· двухсегментное ядро;
· в цитоплазме крупная оксифильная (красная) зернистость, состоящая из двух типов гранул: специфические азурофильные – разновидность лизосом, содержащих фермент пероксидазу, неспецифические гранулы, содержащие кислую фосфатазу, другие органеллы развиты слабо.
Функции эозинофилов:
участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:
· фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
· выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
· выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
· способны фагоцитировать бактерии, но в незначительной степени.
Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20–40 % и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, злокачественных новообразованиях и других). Продолжительность жизни эозинофилов 6–8 дней, из них нахождение в кровеносном русле составляет 3–8 ч.
III. Базофильные лейкоциты или базофилы
Это наименьшая популяция лейкоцитов (0,5–1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11–12 мкм. Морфологические особенности базофилов:
· крупное слабо сегментированное ядро;
· в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов – гепарина, а также гистамина, серотонина и других биологически активных веществ;
· другие органеллы развиты слабо.
Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции)и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и другие). При встрече с антигенами (аллергенами) некоторые В-лимфоциты и плазмоциты вырабатывают иммуноглобулины Е, которые адсорбируются на цитолемме базофилов и тучных клеток. При повторной встрече базофилов с тем же антигеном на их поверхности образуются комплексы антиген-антитело , которые вызывают резкую дегрануляцию и выход в окружающую среду гистамина, серотонина, гепарина. Базофилы также обладают способностью фагоцитоза , но это не основная их функция.
4. Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции – лимфоциты и моноциты.
Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет – защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток.