Состояние газовой системы проверяется по давлению водорода и отсутствию утечек водорода на слух, а также путем контрольных замеров давления по манометру, проводимых через 1 ч при постоянной температуре СК. Отбирается проба газа из СК и производится ее химический анализ. По результатам анализа проверяют правильность работы автоматического газоанализатора. При его неисправности он отключается, а состав газа контролируется химическим анализом, проводимым не реже 1 раза в смену.
Проверка состояния СК и оборудования систем возбуждения производятся разными способами, например такими, как прослушивание (при исправно работающем СК характер его шума не изменяется), осмотр щеточного аппарата на кольцах ротора и коллекторе, которые не должны иметь искрение, способное привести к появлению огня или к КЗ.
Вероятность возникновения кругового огня и перекрытия коллекторных пластин возрастает в режиме форсировки возбуждения. Причинами искрения щеток на кольцах коллектора могут явиться недостаточное нажатие щеток, их плохая подгонка к кольцам, заклинивание щеток в щеткодержателе, вибрация щеток и др. Работе щеток без возникновения искр способствуют винтовые канавки на их рабочей поверхности, а при отсутствии канавок - диагональные прорези, наносимые ножовочным полотном на глубину 6–8 мм. При работе электрических машин поверхности их коллекторов и колец покрываются тонким слоем темной политуры, представляющей собой пленку закиси меди, покрытую частицами графита. Такие поверхности изнашиваются медленнее по сравнению со свежеотполированной медью.
При проверке нагрева возбудителя следует знать, что допустимая температура нагрева их обмоток составляет 70 °C, стали и коллектора - 80 °C.
При тиристорной системе возбуждения при осмотре следует обращать внимание на положения ключей, переключателей, накладок, автоматических выключателей, указателей реле, сигнальных устройств и сигнальных ламп. Исправность тиристоров контролируется горением неоновых ламп, а перегорание всех тиристоров приводит к срабатыванию быстродействующих предохранителей.
Кроме того, при осмотре необходимо следить за отсутствием течей в системе охлаждения тиристоров, проверять температуру охлаждающей дистиллированной воды и поддерживать ее в пределах 15–35 °C, контролировать перепад давления дистиллята (должен быть не менее 0,2 МПа), а также протекание воды через охладители.
Поскольку все устройства и оборудование в шкафах тиристорного возбуждения находятся под напряжением 380 В, то работы в цепях преобразователя без отключения напряжения запрещаются.
Контроль за работой системы бесщеточного возбуждения ведется по измерительным приборам и сигнальной аппаратуре, размещенной на панели АРВ. При осмотре проверяется положение сигнальных устройств, реле, переключателей, а также состояние и охлаждение тиристоров.
Система бесщеточного возбуждения снабжена защитой от внутренних КЗ в цепях ротора и защитой тиристорного преобразователя от сверхтока. При получении со щита управления сигнала о неисправности в системе возбуждения персонал обязан принять меры по выяснению причин и устранению неисправностей. В случае потери и неуспешных попыток восстановления возбуждения СК он должен быть отключен от сети, так как потребляя реактивную мощность, СК увеличивает потери в сети и понижает напряжение на шинах ПС.
Глава 4. Обслуживание коммутационных аппаратов
4.1. Термины, определения и классификация коммутационных аппаратов высокого напряжения
Коммутационный электрический аппарат (аппарат) представляет собой электрический аппарат, предназначенный для коммутации электрических цепей и проведения тока (ГОСТ 17703-72).
Коммутация электрической цепи (коммутирование) - процесс переключений электрических соединений элементов электрической цепи, выключение полупроводникового прибора (ГОСТ 18311-80).
В качестве коммутационных аппаратов на ПС и в РУ высокого напряжения применяются выключатели, разъединители, отделители, короткозамыкатели и установки приготовления сжатого воздуха. Последние служат для приведения в действие пневматических приводов выключателей и разъединителей.
Выключатель - это контактный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных ненормальных условиях в цепи, таких как КЗ (СТ МЭК 50(441)-84).
В соответствии с ГОСТ Р 52565-2006, выключатели по принципу устройства (видам) разделяются на масляные, воздушные, вакуумные, электромагнитные, газовые.
По размещению дугогасительного устройства различают выключатели:
с дугогасительными устройствами, расположенными в заземленном корпусе (баке), - баковые выключатели;
с дугогасительными устройствами, расположенными в корпусе (баке), находящемся под напряжением, - колонковые или подвесные выключатели.
По конструктивной связи между полюсами различают выключатели:
трехполюсного исполнения: с тремя полюсами в общем кожухе и с тремя полюсами на общем основании (фиксированное междуполюсное расстояние);
однополюсного исполнения - с полюсами на отдельных основаниях (нефиксированное междуполюсное расстояние).
Выключатель масляный - выключатель, контакты которого размыкаются и замыкаются в масле (СТ МЭК 50 (441)-84).
Характерными примерами масляных выключателей являются выключатели с малым объемом масла в баке, находящемся под напряжением, и выключатели с большим объемом в заземленном баке.
Выключатель воздушный - выключатель, в котором дуга образуется в потоке газа, воздуха высокого давления (ГОСТ Р 52565-2006).
Выключатель газовый - выключатель, в котором дуга образуется в потоке газа, кроме воздуха (ГОСТ Р 52565-2006).
Выключатель вакуумный - выключатель, контакты которого размыкаются и замыкаются в оболочке с высоким вакуумом (ГОСТ Р 52565-2006).
Выключатель электромагнитный - выключатель, в котором гашение дуги осуществляется за счет ее охлаждения при перемещении под действием электромагнитного поля (ГОСТ Р 52565-2006).
Разъединитель - это контактный коммутационный аппарат, предназначенный для коммутации электрической цепи без тока или с незначительным током, который для обеспечения безопасности имеет в отключенном положении изоляционный промежуток.
Под незначительными токами в данном случае понимаются токи измерительных цепей, токи утечки, емкостные токи выводных шин, коротких кабелей, токи ХХ трансформаторов (ГОСТ 17703-72).
Разъединитель в отключенном положении должен создавать ясно видимый разрыв цепи, соответствующий классу напряжения установки.
Приводы разъединителей должны иметь устройства фиксации в каждом из двух оперативных положений: включенном и отключенном. Кроме того, они должны иметь надежные упоры, ограничивающие поворот главных ножей на угол больше заданного.
В соответствии с требованиями ГОСТ Р 52726-2007, разъединитель способен размыкать и замыкать цепь при малом токе или малом изменении напряжения на выводах каждого из его полюсов. Он также способен проводить токи при нормированных условиях в цепи и проводить в течение нормированного времени токи при ненормированных условиях, таких как КЗ.
Малые токи - это такие токи, как емкостные токи вводов, шин, соединений, очень коротких кабелей, токи постоянно соединенных ступенчатых сопротивлений выключателей и токи ТН и делителей напряжения (ГОСТ Р 52726-2007).
Для номинальных напряжений до 330 кВ включительно ток, не превышающий 0,5 А, по этому определению считается малым током; для номинального напряжения 500 кВ и выше и токов, превышающих 0,5 А, необходимо проконсультироваться с изготовителем, если нет особых указаний в руководствах по эксплуатации разъединителей.
К малым изменениям напряжения относятся изменения напряжения, возникающие при шунтировании регуляторов индуктивного напряжения или выключателей (ГОСТ Р 52726-2007).
Для разъединителей номинальным напряжением 110 кВ и выше может быть установлена коммутация уравнительных токов.
В соответствии с ГОСТ Р 52726-2007, разъединители разделяются на следующие классы:
разъединитель класса М0 - разъединитель, имеющий механическую износостойкость 1000 рабочих циклов, применяемый в распределительных и передающих системах для выполнения общих требований настоящего стандарта;
разъединитель класса М1 - разъединитель, имеющий механическую износостойкость 2000 рабочих циклов, в основном применяемый для совместной работы с выключателем одного класса;
разъединитель класса М2 - разъединитель, имеющий повышенную механическую износостойкость 10 000 рабочих циклов, в основном применяемый для совместной работы с выключателем одного класса.
Отделитель - это коммутационный электрический аппарат, предназначенный для быстрого отсоединения поврежденного участка электросети в бестоковую паузу, а также для отключения и включения намагничивающих и зарядных токов. Его контактная система не приспособлена для операций под током нагрузки. Отделители по конструкции токоведущих частей не отличаются от разъединителей.
Отделители применяются в основном на ПС без выключателей со стороны ВН.
В ЗРУ 6-35 кВ разъединителями и отделителями заводского исполнения допускается включение и отключение намагничивающего тока силовых трансформаторов, зарядного тока ВЛ и КЛ, а также тока замыкания на землю, не превышающих значений, указанных в табл. 4.1.
Таблица 4.1
Предельные значения токов ХХ и зарядных токов, отключаемых и включаемых разъединителями и отделителями 110–500 кВ, указаны в табл. 4.2.
Короткозамыкатель - это коммутационный электрический аппарат, предназначенный для создания искусственного КЗ в электрической цепи (ГОСТ 17703-72).
Конструктивно короткозамыкатель аналогичен заземлителю, но за счет мощной контактной системы может включаться на КЗ.
Короткозамыкатели вместе с отделителями применяются в упрощенных схемах ПС вместо более дорогих силовых выключателей. Такая замена позволяет экономить значительные денежные средства, поскольку стоимость силовых выключателей сравнительно велика. Чем больше присоединений на ПС и чем выше напряжение высокой стороны, тем более значительной становится выгода от использования упрощенных схем на короткозамыкателях и отделителях. В основном упрощенные схемы получили распространение на напряжении 35 и 110 кВ.
В настоящее время при реконструкции и техническом перевооружении ПС и РУ предусматривается замена отделителей и короткозамыкателей на выключатели.
4.2. Обслуживание выключателей высокого напряжения
4.2.1. Требования к выключателям
Выключатели высокого напряжения в качестве коммутационных аппаратов предназначены для коммутации электрических цепей с целью включения и отключения токов нагрузки, токов намагничивания силовых трансформаторов и зарядных токов линий и шин, а также отключения токов КЗ, включая коммутацию при изменениях схем электроустановок.
Выключатели рассчитываются для работы практически во всех режимах электрической цепи, в том числе в тяжелом режиме отключения токов КЗ.
Исходя из этого, к выключателям предъявляются следующие требования:
надежное отключение любых токов нагрузки в пределах их номинальных значений;
быстродействие при отключениях, связанное с гашением дуги в возможно минимальный промежуток времени;
пригодность для АПВ после отключения электрической цепи под действием защиты;
обеспечение взрыво- и пожаробезопасности при всех видах коммутации;
удобство в обслуживании, в частности, каждый выключатель (или его привод) должен иметь хорошо видимый указатель положения "Включено" и "Отключено". Если выключатель не имеет открытых контактов, а его привод установлен отдельно (например, за стенкой) от выключателя, то указатели положения должны быть и на выключателе, и на его приводе.
Отключение и включение под напряжение и в работу присоединения, имеющего в своей цепи выключатель, производится дистанционно. При этом кнопка (ключ управления) выключателя удерживается в положении "Отключить" или "Включить" до момента срабатывания сигнализации, указывающей на окончание операции.
При отказе в отключении выключателя при дистанционном управлении во избежание несчастных случаев не допускается его отключение воздействием на кнопку местного управления, защелку привода или сердечник отключающего электромагнита. Для вывода выключателя в ремонт в этом случае обесточивается соответствующая секция или участок электроустановки. Отключение такого выключателя по месту допустимо лишь при настоятельной необходимости, например, для снятия напряжения с пострадавшего, если нет других вариантов.
Из многочисленных типов и конструкций выключателей на практике наибольшее распространение получили масляные выключатели с большим объемом масла, выключатели с малым объемом масла и воздушные выключатели. Все более широкое применение получают элегазовые и вакуумные выключатели.
Общими для всех выключателей основными конструктивными частями являются токопроводящие и контактные системы с дугогасительными устройствами, изоляционные конструкции, корпуса и вспомогательные элементы (газоотводы, предохранительные клапаны, указатели положения и др.), передаточные механизмы и приводы.
4.2.2. Обслуживание масляных выключателей
Масляные выключатели бывают с большим объемом масла (серий МКП, У, С и др.) и маломасляные выключатели (серий ВМГ, ВМП, МГГ, ВМК и др.).
В баковых масляных выключателях с большим объемом масла используется масло как для гашения дуги, так и для изоляции токопроводящих частей от заземленных конструкций.
В маломасляных выключателях масло используется в основном для гашения дуги и может быть при необходимости использовано для изоляции от земли частей, находящихся под напряжением. Их баки специально изолируются от земли.
Гашение дуги в масляных выключателях обеспечивается воздействием на нее масла, которое является дугогасящей средой. При этом образуется сильный нагрев, сопровождающийся разложением масла и образованием в камере выключателя газа с температурой газовой смеси, достигающей 2500 К.
Высокую дугогасящую способность масла определяет наличие в газовой смеси до 70 % водорода. Быстрое нарастание давления в газовой смеси до 3–8 МПа способствует эффективной деионизации межконтактного пространства в выключателе.
При расхождении контактов дуга гаснет в момент прохождения тока через нулевое значение, поскольку в это время мощность к ней не подводится, температура дуги падает и дуговой промежуток практически теряет проводимость.
Однако дуга может повториться, что зависит от двух противоположных друг другу факторов: скорости нарастания восстанавливающегося напряжения, стремящегося пробить промежуток между контактами, и от скорости нарастания изолирующих свойств промежутка, препятствующих пробою. Отсюда ясно, что если скорость восстановления напряжения на контактах полюса выключателя окажется выше скорости восстановления изолирующих свойств среды, то дуга вновь загорится и процесс ее гашения повторится.
В современных масляных выключателях используются эффективные дугогасящие устройства, которые ускоряют восстановление электрической прочности межконтактного промежутка. Также снижению скорости восстановления напряжения способствуют шунтирующие резисторы, присоединяемые параллельно главным контактам дугогасительных камер, которые применяются в некоторых типах выключателей.
Кроме того, на длительность горения дуги влияет сила отключаемого тока, с увеличением которого происходит более сильное газообразование и, следовательно, более успешное гашение дуги.
При малых токах отключения гашение дуги затягивается, так как ее энергии оказывается недостаточно для эффективного гашения.
При отключении токов намагничивания процесс гашения дуги сопровождается возникновением перенапряжений, связанных с обрывом тока до момента его прохождения через нуль. Перенапряжения приводят к повторным пробоям. В этих случаях целесообразно применение шунтирующих резисторов, позволяющих снизить кратность перенапряжений. С этой же целью шунтирующие резисторы целесообразно применять и при отключении зарядных токов ЛЭП, так как через них разряжается емкость отключаемых линий.
Важную роль при гашении дуги играет и высота слоя масла над контактами. С увеличением слоя масла возрастает давление в газовом пузыре и интенсивней проходит процесс деионизации. Однако высокий уровень масла в баке снижает объем воздушной подушки, что может привести к повышению давления внутри бака и сильному удару масла в его крышку.
При небольшом слое масла над контактами горючие газы, проходя через него, не успевают охладиться, и в результате соединения с кислородом воздуха могут образовать гремучую смесь.
Большое значение в выключателе имеет скорость расхождения контактов. При высокой скорости их движения дуга быстро достигает своей критической длины, при которой восстанавливающее напряжение становится недостаточным для пробоя большого промежутка. Эффективным способом увеличения скорости удлинения дуги является увеличение числа последовательных разрывов в каждом полюсе выключателя.
На скорость движение контактов отрицательно влияет вязкость масла в выключателе, которая возрастает с понижением температуры масла.
Существенное влияние на скоростные характеристики масляных выключателей оказывают загрязнение и загустение смазки трущихся частей приводов и передаточных механизмов, так как при этом замедляется скорость движения контактов вплоть до их остановки и зависания. Это следует учитывать при очередных ремонтах, в процессе которых необходимо удалить старую смазку и заменить ее на новую консистентную незамерзающую смазку, например, марок ЦИАТИМ-201, ЦИАТИМ-221.
Для отключения и включения выключателей используют электромагнитные, пневматические или пружинные приводы.
По способу включения и отключения приводы бывают полуавтоматические и автоматические.
Выключатель с полуавтоматическим приводом включают вручную, а отключают как вручную, так и дистанционно от релейной защиты. Автоматические приводы осуществляют включение и отключение выключателя как дистанционно от релейной защиты, так и вручную.
Привод выключателя состоит из следующих основных частей:
силовое устройство, служащее для преобразования подведенной энергии в механическую;
передаточный и операционный механизмы, служащие для передачи движения от силового устройства к механизму выключателя и для удержания его во включенном положении;
отключающее устройство.