Почему мы не проваливаемся сквозь пол - Джеймс Гордон 16 стр.


Другое неудобство состояло в том, что время твердения клея после добавкикатализатора, а следовательно, и время, в течение которого с таким клеемможно было работать, ограничивалось несколькими минутами. Более того, отвердеющем клее нельзя было сказать, сколько минут назад в него был добавленотвердитель. Эти обстоятельства в сочетании с известными человеческиминедостатками часто приводили ко всякого рода ошибкам. Правда, впоследствиибыли разработаны отвердители, которыми можно было смазывать одну деталь,в то время как другая смазывалась самим клеем - твердение и схватываниеначиналось лишь после того, как поверхности прижимались одна к другой.Дальнейшим шагом в сторону повышения надежности (учитывались все те жечеловеческие недостатки) была окраска клея и отвердителя в разные характерныецвета.

Положение дел с клеем к концу войны было, таким образом, следующим.Прекрасная и чрезвычайно водостойкая фанера стала универсальным материалом.В качестве сборочных клеев конкурировали казеин и карбамидная смола. Казеинбыл исключительно прост в использовании и обладал прекрасной прочностьюкак в сухом, так и во влажном состояниях, но в то же время при первой жевозможности он катастрофически разлагался. Карбамидный клей не подверженразложению, но поначалу при клейке он требовал определенной сноровки, дак тому же случалось, что он ни с того ни с сего рассыпался. С тех пор карбамидныеклеи были значительно усовершенствованы, а два теперешних синтетическихклея, резорцин-формальдегидная и эпоксидная смолы, будучи, правда довольнодорогими, обладают практически всеми необходимыми достоинствами. Нужнолишь иметь в виду, что эпоксидная смола часто вызывает воспаление.

Когда необходимо сделать выбор из десятков современных клеев, то главнымиаргументами за и против обычно служат легкость применения, долговечностьи стоимость. Правильно сработанное соединение при использовании любогохорошего клея бывает прочнее окружающей древесины. Как правило, разрушениепроисходит не по самому шву, и слой клея оказывается покрытым тонким слоемдревесины.

Гвозди и шурупы не увеличивают прочности хорошего клеевого шва, но впроцессе твердения всякий клей требует, чтобы склеиваемые поверхности былиплотно прижаты одна к другой, а это проще всего достигается с помощью гвоздейи шурупов. Ну, а коль уж гвоздь забит, нет особого смысла вытаскивать егопосле схватывания клеем. Более того, если склейка по каким-либо причинамоказалась неудачной, механическое крепление будет полезной страховкой.В те времена, когда был еще только казеин, в тропиках о некоторых самолетахговорили, что они собраны на гвоздях без шляпок. В большинстве случаевэто было, конечно, клеветой, но я сам несколько раз был свидетелем того,что это не так уж далеко от истины. Лично я, когда речь идет о клеях, непостеснялся бы надеть и ремень, и подтяжки.

Слоистая древесина и фанера

Использование древесины всегда было связано с заботами о том, чтобыполучить материал нужных размеров и быть уверенным, что полученный материалне содержит скрытых дефектов. Давно прошли те времена, когда можно былокупить огромные бревна сосны каури из Новой Зеландии или желтой сосны из-подКвебека, которые были практически совершенными. В наше время в техникечаще всего используется слоистая древесина. Бревна, как правило, разрезаютсяна сравнительно небольшие куски, которые затем склеиваются в пакеты; делаетсяэто обычно на гидравлических прессах с помощью синтетического клея. Такимспособом можно получить листы любых размеров. При этом на деле используетсявесь объем как больших, так и малых деревьев; любой серьезный дефект нетрудновыявить и провести отбраковку. Легко могут быть изготовлены клееные элементыизогнутой формы, на дорогах Англии нередко создают помехи движению грузовики,перевозящие огромные деревянные арки для разного рода архитектурных сооружений.Нехватка высококачественной древесины для авиа- и судостроения могла быстать серьезной проблемой во время войны, если бы обычная древесина недоводилась до нужных кондиций путем создания слоистых материалов.

Эти слоистые материалы были просто-напросто обычной древесиной, разрезаннойна куски и затем снова склеенной. Но существовал, однако, печальный опытматериалов, известных как "улучшенная древесина", свойства и судьба которойбыли, казалось, предопределены этим громким названием. Как "улучшалась"древесина? Сначала ее пропитывали некоторым количеством смолы, а затемпрессовали до значительно большей плотности. Считалось, что при этом механическиесвойства материала должны улучшиться. И они действительно улучшались, но,как правило, лишь пропорционально увеличению плотности. В то же время упрессованной древесины значительно снижалась трещиностойкость. Что ещехуже, этот материал разбухал в воде до своих начальных размеров, и разбуханиеэто было почти всегда непредсказуемым и необратимым. И все-таки какое-товремя прессованная древесина использовалась для изготовления пропеллеровнекоторых типов самолетов.

Совсем иное дело - фанера, которую, пожалуй, следует считать новым ичрезвычайно удачным материалом. Она получается путем склеивания трех илиболее листов шпона, то есть тонких слоев древесины с перекрестным направлениемволокон. Шпон либо нарезается тонкими слоями из бревна на машине, оченьнапоминающей большой рубанок, либо получается с помощью лущения. Круглоебревно сначала прогревается в течение суток в паровой траншее, а затемустанавливается на специальном лущильном станке. Бревно вращается в станке,а длинный нож врезается в него и начинает по кругу снимать тонкие слоидревесины с такой скоростью, что на это зрелище прямо-таки залюбуешься.Далее шпон режется, сушится, из него удаляются дефектные места, и наконец,спрессованный и склеенный на больших прессах, он превращается в фанеру.

Поначалу фанера склеивалась растительными или животными клеями, поэтомуона совершенно лишена была влагостойкости и чуть ли не стала почти чтобранным словом. Внедрение фенольных клеев все изменило и, между прочим,занятнейшим образом проиллюстрировало, как может трансформироваться отношениек материалу. Современная фанера на фенольных клеях совершенно не поддаетсяводе - она не расслаивается, когда намокает. Поэтому она широко используетсяв судостроении.

Как и следовало ожидать, размер фанеры при колебаниях влажности изменяетсявдвое меньше, чем у обычной древесины. Это значит, что максимальные измененияразмеров в двух направлениях составят около 5%. На практике эта величиназначительно ниже. Но если поверхностные слои высушиваются, например нагорячем солнце, они оказываются под напряжением, растягивающим их поперекволокон. В результате фанера может покрыться густой сеткой малых трещинок.Сами по себе они не слишком страшны, но незакрашенные складки становятсяловушками для влаги и бактерий, что таит в себе известные неприятности.Горячее прессование убивает почти все бактерии и грибки, но после растрескиванияпопадающая на древесину инфекция в сочетании с водой приводит к быстромуее гниению.

Аэропланы

Никогда не следует относиться с презрением к каким бы то ни было конструктивнымформам, в том числе и к биплану, построенному на струнах и стержнях. Главныйпоказатель, который определяет выбор материалов и конструктивных форм,-это отношение нагрузки на конструкцию к ее размерам. Когда нагрузки сравнительноневелики по отношению к размерам, обычно лучше сосредоточить сжимающиесилы в нескольких компактных стержневых элементах (стойках) и распределитьрастяжение в обшивке и струнах. Именно так построены оснастка парусныхкораблей, палатки, ветряные мельницы. С некоторыми оговорками это справедливои для воздушных шаров. Любые другие решения в подобных случаях приводилибы к тяжелым, дорогим и менее удобным конструкциям.

По понятным причинам все первые самолеты имели очень малую нагрузкуна крыло. Размеры во многих случаях были не намного меньше, чем у соответствующихсовременных самолетов, ну а вес такого самолета составлял менее 10% весасовременной машины с жесткой обшивкой. В таких условиях конструкция изткани, натянутой на каркас из древесины и бамбука, была и логичной, и эффективной.При мощности тогдашних двигателей аэроплан другой конструкции просто неподнялся бы с земли. Форма биплана позволяла построить отличную решетчатуюферму и кессоны - очень жизнеспособные и легкие конструкции. Массивныеэлементы были нужны только для того, чтобы воспринимать сжатие, и, посколькуглавная опасность в таких условиях крылась в потере устойчивости, эти элементыдолжны были быть возможно более простыми: лучше всего этим целям служилибамбук и ель. Для растянутых элементов использовалась рояльная проволока.Однако соединение бамбуковых элементов, работающих на растяжение, всегдабыло серьезной проблемой.

Такой способ конструирования давал отличные прочные самолеты лишь тогда,когда конструктор твердо знал, какой элемент будет нагружаться растяжением,а какой - сжатием. Ведь если стойка при необходимости и могла принять насебя растяжение, то уж проволока никогда не сопротивляется сжатию. В некоторыхбипланах посложней не всегда можно было проследить пути, по которым передаетсянагрузка. Недаром в ходу была банальная шутка: лучший способ проверитьправильность оснастки крыла биплана - посадить в середину канарейку; еслией удастся вылететь наружу - в конструкции какой-то непорядок.

Печально известен случаи с бипланом "Кафедральный собор". Его создательС.Ф. Коуди питал пристрастие к сложной путанице расчалок, но ему не хваталотехнической грамотности. Мой дед, один из пионеров авиации, рассказывалмне, что однажды он долго спорил с Коуди по поводу того, будет ли в полетекакой-то элемент испытывать растяжение или сжатие. Коуди настаивал, чтоэлемент будет растянут, и поставил струну. Правота моего деда обернуласьдля Коуди трагически - он погиб через несколько минут после взлета. Естькакая-то ирония судьбы в том, что ситуация с "Кафедральным собором" былапрямо противоположна неприятностям с кладкой каменных соборов: они рушилисьиз-за того, что в тех местах, где, по предположению строителей, должнобыло быть сжатие, оказывалось растяжение.

Потребовалось немало времени и жизней, прежде чем были в достаточной степениизучены и поняты условия нагружения, в которых оказывается самолет в полете.Англичане во многом обязаны этим достижением группе одаренных людей,собравшихся в Фарнборо в первую мировую войну (знаменитая Чадлайфскаякучка).

Принципы расчета и испытаний самолетов на прочность остаются и сейчас,в эпоху сверхзвуковых истребителей, во многом теми же, что и в годы деревянныхбипланов, хотя в практике этих операций появилось много нового.

Когда самолет спроектирован и построен, полноразмерный образец его долженбыть проверен на прочность и жесткость. Испытания на жесткость сравнительнопросты, но прочностные испытания иногда требуют громоздких и сложных приспособлений.В 1914 году самолет обычно переворачивали вверх ногами и затем на плоскостикрыла укладывали мешки с песком или свинцовой дробью, распределяя их так,чтобы они представляли аэродинамическую нагрузку на самолет в самых опасныхусловиях полета, например в случае выхода из пике. Довольно скоро нагрузкина самолет стали слишком большими и воспроизвести их этим методом уже неудавалось (хотя мешки с дробью иногда все еще используются для кое-какихпростых испытаний). В наши дни обычно прибегают к помощи гидравлическогодомкрата, который передает нагрузку на крыло через изощренную систему рычагов,напоминающую родословное древо. Каждая ветвь этого древа заканчиваетсякреплением на поверхности крыла. Благодаря тому, что точек крепления много,распределенный характер аэродинамической нагрузки можно имитировать оченьхорошо (рис. 42).

Джеймс Гордон - Почему мы не проваливаемся сквозь пол

Рис. 42. Схема испытания крыла самолета. Нагрузка прикладывается к крылу всотнях точек, распределенных по обеим поверхностям. 1 - стальная рама;2 - гидравлический домкрат: 3 - крыло; 4 - имитация крепления кфюзеляжу.

Лучшие образцы деревянных бипланов, такие, как "Авро-504" и серия "Мотс"("Мотылек"), были почти вечными. Разрушить их можно было, разве что врезавсо всего маху в землю. Чувство конструктивной надежности в полете на такихсамолетах, которые держались на стойках и расчалках, было очень приятным,настроение могли испортить лишь двигатели. Монопланы с консольными крыльямиказались намного опасней.

Однако с ростом нагрузок общая тенденция проектирования твердо повернуласьв сторону монококовой конструкции, то есть моноплана с жесткой обшивкой.Нагрузки в ней по возможности воспринимались обшивкой. Тонкая мембранаотлично сопротивляется растяжению; трудности связаны здесь с тем, как заставитьее воспринимать сжатие без выпучиваний. На практике этот вопрос решил компромисс:тонкая обшивка разделила нагрузку с лонжеронами и стрингерами. Вся этадовольно сложная конструкция образовала жесткую на изгиб, а следовательно,устойчивую против выпучивания оболочку.

Отличным примером первых таких самолетов был DC-3 позже известный как"Дакота". Затем последовали "Спитфайер" и многие другие знаменитые самолетывторой мировой войны. Все они были металлическими, алюминиевые листы обшивкиклепались к стрингерам уголкового профиля. Такая конструкция оказаласьпо весовой эффективности практически эквивалентной деревянно-тканевой.Преимуществами ее были более гладкая наружная поверхность и силовая рама,почти полностью исключавшая уход за ней. Конструкция такого типа остаетсяи сейчас основной при проектировании самолетов.

В 1939 году широко распространилось мнение, что деревянным самолетампришел конец. Может быть, так оно и случилось бы, не возникни во времявойны нехватка алюминия, а также оборудования и квалифицированных кадров.Кроме того, мебельные фирмы сократили производство, да и время разработкидеревянного самолета всегда было намного короче, чем металлического.

Один многоопытный эксперт заработал своего рода славу, категорически заявив,что построить современный самолет из дерева технически невозможно. Едва успелипросохнуть чернила на его бумагах, как появился "Москито". Этот деревянныйсамолет был одной из самых удачных машин, он был построен в 7781 экземпляре.Быть может, немцы не любили его больше, чем любой другой английскийсамолет.

Кроме "Москито" и учебно-тренировочных машин, огромную серию деревянныхаппаратов составили планеры. Большинство планеров имело значительные размеры,размах их крыла доходил до 35 метров. Зачастую они предназначались дляпереброски танков и другого тяжелого снаряжения. Вначале предполагали строитьпланеры в расчете лишь на один полет. Однако это оказалось непрактичным:необходимы были машины для тренировок, нужно было перебазировать планерыс аэродрома на аэродром в связи с изменениями стратегической и тактическойситуаций и - что более важно - рука не поднималась строить аэроплан толькодля одного полета. Практически эти планеры были очень похожими на самолет,разве что не имели двигателя.

В целом деревянный самолет был чрезвычайно удачным и, я думаю, сыгралнемалую роль в войне. Однако он задал в свое время немало разного родатехнических задач, которые с головой завалили работой небольшую группухимиков-органиков Авиационного центра в Фарнборо. Значительным в этой работеоказался вклад молодого кембриджского биолога Марка Прайера, специальноотозванного из прожекторной команды. Во многом благодаря Прайеру сократилосьчисло аварий, и большинство планеров долетало до Франции в удовлетворительномсостоянии. Немало солдат и авиаторов обязаны жизнью этому неутомимому биологу,который с аэродрома, мчался к микроскопу, от микроскопа - на самолетныйзавод, оттуда опять к микроскопу и так на протяжении нескольких лет.

Взвешивая сейчас все обстоятельства этой истории, трудно утверждать,что можно было бы заблаговременно предвидеть все возникшие тогда проблемы.К старым обтянутым тканью бипланам не было никаких претензий: их собиралииз небольших кусков дерева, содержали в добротных сухих ангарах, они самипо себе хорошо вентилировались. С самолетами военного времени все былоне так. Прежде всего новые машины имели монококовую конструкцию со сравнительнотяжелыми лонжеронами и стрингерами, жестко приклеенными к толстым фанернымстенкам и обшивке. (Мы еще поговорим позже о некоторых последствиях, ккоторым привело такое изменение конструкции). Самолет был разделен на большоечисло плохо вентилируемых и труднодоступных отсеков. В отсеках самолетов,оказавшихся под английским или тропическим дождем, воздух быстро становилсязатхлым, на дне их часто появлялись лужи. В таких условиях нескольких месяцеввполне хватало не только на разложение клея, но и на гниение древесины.Нелегко наладить вентиляцию, если конструктор о ней забыл, и очень частосамое лучшее, что можно было сделать, это оставлять все контрольные люкиоткрытыми во время стоянки на земле.

Однако во многих аэропланах свободная вода собиралась часто в самыхнедоступных местах. Нужно было позаботиться, следовательно, о дренажныхотверстиях, делать их следовало не где попало, а в самой нижней точке каждогоотсека. Поначалу из этого почти ничего не получилось. Просверленные в фанереотверстия изнутри окружала небольшая корона из щепок, которую нельзя былоне только удалить, но и увидеть. Щепки быстро забивались всяким пухом игрязью, блокировали отверстие, и снова появлялась лужа. Пришлось прожигатьотверстия раскаленным прутом - казалось бы, очевидное решение, стоило лишьоб этом подумать заранее. Такая процедура применялась как к самолетам,так и к торпедным катерам.

Прожженные дренажные отверстия, безусловно, помогали, но возникла новаяпроблема - грязь, которая забрасывалась вместе с водой не только в дренажные,но и во все другие отверстия колесами самолета при взлете и посадке. Водастекала, оставляя слой влажной грязи, часто содержащей семена различныхрастений. Семена попадали при этом примерно в те же условия, в которыхпрорастают семена огурцов или салата, завернутые во влажную тряпочку. Такойогород в самолете был, конечно, ни к чему.

В целом эти неприятности были особенно опасными в планерах. Самолеты,естественно, летают более часто, а сквозняки в полете идут на пользу конструкциии во вред грибку. Но планеров делали все больше и больше, в ангарах дляних не было места, так что их держали под дождем на задворках аэродромов.Более 5000 планеров ожидали начала военных действий. "Эксперты" не моглиуследить за состоянием всех этих машин, поэтому по инструкции Марка Прайераони должны были докладывать ему, учуяв исходящее от планера зловоние.

Назад Дальше