Что такое астроботаника?
Это новая советская наука, созданная одним из наших выдающихся астрономов - членом-корреспондентом Академии наук СССР Гавриилом Андриановичем Тиховым.
Тихов первый сделал фотоснимки Марса через цветные светофильтры. Этим путем ему удалось точно установить окраску частей планеты в разное время года.
Особенно интересными оказались пятна, названные когда-то морями. Эти пятна меняли свою окраску с зелено-голубоватым оттенком весной на бурые летом и на коричневые тона зимой. Тихов провел параллель этих изменений с переменой окраски вечнозеленой тайги в Сибири. Зеленая весной, голубоватая в дымке, тайга в летнюю пору буреет, а зимой обретает коричневый оттенок.
В то же время окраска обширных пространств Марса оставалась неизменной - красновато-коричневой, во всем подобной окраске земных пустынь.
Предположение о том, что меняющие окраску пятна Марса - зоны сплошной растительности, требовало доказательств.
Попытки обнаружить спектральным методом на Марсе хлорофилл, обеспечивающий фотосинтез и жизнь земных растений, не увенчались успехом.
Земные растения, как сообщено в рассказе, характерны еще тем, что, сфотографированные в инфракрасных лучах, они получаются на снимке белыми, словно покрытые снегом. Если бы зоны предполагаемой на Марсе растительности получились на снимках в инфракрасных лучах такими же белыми, можно было бы не сомневаться в существовании растительности на Марсе.
Однако новые снимки Марса не подтвердили смелых предположений.
Но это не смутило Г. А. Тихова. Он подверг сравнительному исследованию отражательную способность земных растений на Юге и на Севере.
Результаты оказались поразительными. Белыми на фотоснимках в инфракрасных, тепловых, лучах получились только растения, которые отражали, не используя эти лучи. На севере растения (например морошка или мхи) не отражали, а поглощали тепловые лучи, которые были для них отнюдь не излишними. На снимках в инфракрасных лучах северные растения не выходили белыми, как не выходили белыми и зоны предполагаемой растительности Марса.
Это исследование, подкрепленное полярными и высокогорными экспедициями учеников Тихова, позволило ему сделать остроумный вывод, что растения, приспосабливаясь к условиям существования, обретают способность поглощать необходимые лучи и отражать ненужные. На Юге, где солнца много, растения не нуждаются в тепловых лучах спектра и отражают их; на Севере, бедном солнечным теплом, растения не могут позволить себе такой роскоши и стремятся поглотить все лучи солнечного спектра. На Марсе, где климат особенно суров и солнце скупо, растения естественно стремятся поглотить как можно больше лучей, и понятны неудачи сравнения в этом отношении марсианских растений с южными растениями Земли. Они скорее похожи на растения Арктики.
Придя к такому выводу, Тихов нашел также и разгадку неудач, связанных с попытками обнаружить на Марсе хлорофилл.
Дальнейшее изучение этого вопроса все больше убеждало Тихова в полной аналогии развития марсианских растений с земными. Он обнаружил на Марсе зоны растительности в обширных пустынях, по отражательной способности подобные тем растениям, которые растут у нас в среднеазиатских пустынях.
Интересны сообщения Тихова о массовом цветении некоторых областей марсианских пустынь ранней весной. По цвету и характеру эти зоны цветения на Марсе очень напоминают огромные пространства пустынь Средней Азии, на короткое время покрывающиеся сплошным ковром красных маков.
В последнее время Тиховым высказаны интересные предположения о растительности Венеры. Поскольку на Венере тепла более чем достаточно, растения этой планеты, если они есть, должны отражать всю тепловую часть солнечного спектра, то есть они должны иметь красную окраску. Открытие советского астронома Барабашева на Пулковской обсерватории, обнаружившего через облачность Венеры желтые и оранжевые лучи, дало возможность Тихову предположить, что эти лучи не что иное, как отражение покрова красной растительности Венеры.
Не все ученые пока разделяют точку зрения Г. А. Тихова. Задача Сектора астроботаники Академии наук Казахской ССР найти еще новые неоспоримые доказательства существования растительной жизни на других планетах и прежде всего на Марсе.
Есть ли каналы на Марсе?
Впервые эти странные образования были обнаружены Скиапарелли во время великого противостояния в 1877 году. Они представились ему правильными прямыми линиями, сетью покрывающими планету. Он назвал их "каналами", первым высказав осторожную мысль, что это искусственные сооружения разумных обитателей планеты.
Последующие исследования поставили под сомнение существование каналов. Новые наблюдатели не видели их.
Выдающийся астроном Лоуэлл посвятил свою жизнь проблеме существования жизни на Марсе. Создав специальную обсерваторию в пустыне Аризона, где прозрачность воздуха благоприятствовала наблюдениям, он подтвердил открытие Скиапарелли и развил его осторожную мысль.
Лоуэлл открыл и изучил огромное число каналов. Он разделил их на главные артерии (наиболее заметные, двойные, как он утверждал, каналы), которые шли от полюсов через экватор в другое полушарие, и на подсобные каналы, идущие от главных и пересекающих зоны в различных направлениях по дугам большим кругом, то есть по наикратчайшему пути по поверхности планеты (Марс - планета с ровным рельефом. На ней нет гор и заметных изменений рельефа).
Лоуэлл обнаружил две сети каналов; одну, связанную с южной полярной областью тающих льдов, и другую - с такой же северной областью. Эти сети были видны попеременно. Когда таяли северные льды, можно было заметить каналы, идущие от северных льдов; когда таяли южные льды, в поле зрения появились каналы, идущие от южных льдов.
Все это дало возможность Лоуэллу объявить каналы грандиозной ирригационной сетью марсиан, которые построили гигантскую систему использования воды, образующейся при таянии полярных шапок. Лоуэлл вычислил, что мощность водонапорной системы Марса должна в 4000 раз превосходить мощность Ниагарского водопада.
Подтверждение своей мысли Лоуэлл видел в том, что каналы появляются постепенно, с момента начала таяния льдов. Они удлиняются как бы по мере продвижения по ним воды. Установлено, что расстояние в 4250 километров по поверхности Марса удлиняющийся канал (или вода в нем) проходит за 52 дня, что составляет 3,4 километра в час.
Лоуэлл установил также, что в точках пересечения каналов существуют пятна, названные им оазисами. Эти оазисы он готов был считать крупными центрами обитателей Марса, их городами.
Однако идея Лоуэлла не нашла всеобщего признания. Само существование каналов было поставлено под сомнение. При рассмотрении Марса в более сильные телескопы "каналы" как сплошные прямолинейные образования не обнаруживались. Замечались лишь отдельные скопления точек, которые глаз мысленно стремился соединить в прямые линии.
"Каналы" стали приписывать оптическому обману, которому поддавались лишь некоторые исследователи.
Однако на помощь пришел объективный метод исследования.
Г. А. Тихов, работая в Пулковской обсерватории, впервые в мире сфотографировал каналы Марса. Фотопластинка - не глаз, она, казалось бы, не может впадать в ошибку.
За последние годы фотографирование каналов проводится все в более широких размерах.
Так, в противостояние 1924 года Тремилером было получено на фотографии свыше тысячи марсианских каналов. Дальнейшие фотоснимки подтвердили их существование.
Крайне интересным оказалось исследование окраски таинственных каналов. Их окраска во всем подобна меняющейся окраске зон сплошной растительности Марса.
Вычисление ширины каналов (от ста до шестисот километров) привело к мысли, что каналы не есть "каналы - открытые выемки в почве, наполненные водой", скорее они представляют собой полосы растительности, появляющейся по мере течения воды тающих льдов по грандиозным водопроводным трубам (со скоростью 3,4 километра в час. С этой скоростью по прошествии некоторого времени и идет волна всходов). Эти полосы растительности (леса и поля) меняют свою окраску по мере изменения времени года.
Предположение о существовании зарытых в почву водопроводных труб с выводами в виде колодцев могло бы примирить наблюдателей, видевших каналы, и наблюдателей, видевших не прямые линии, а лишь отдельные точки, расположенные по прямым линиям. Эти точки напоминают оазисы искусственно орошаемой растительности в местах вывода водопроводных труб на поверхность.
Предположение о существовании зарытых труб тем естественнее, что в условиях малого атмосферного давления Марса всякий открытый водоем способствовал бы быстрой потере воды за счет интенсивного испарения.
Спор о существе каналов еще продолжается, но он уже не ставит под сомнение их существование.
Отклоняясь от слишком смелого предположения о сооружениях разумных обитателей Марса, некоторые ученые скорее готовы признать "каналы" трещинами вулканического происхождения, которые, кстати говоря, не обнаружены ни на одной из других планет Солнечной системы. Эта гипотеза страдает еще и тем, что не может объяснить движения воды вдоль каналов без существования мощной водонапорной системы, подающей полярные воды через экватор в противоположное полушарие.
Другая точка зрения астрономов склонна считать цветные, меняющиеся по длине и цвету геометрически правильные полосы на Марсе следами жизнедеятельности живых существ, достигших высшего уровня умственного развития, не уступающего людям Земли.
Каковы обстоятельства Тунгусской катастрофы 1908 года?
На основании показаний более тысячи очевидцев - корреспондентов Иркутской сейсмологической станции и Иркутской обсерватории установлено:
Ранним утром 30 июня 1908 года по небосводу пролетело огненное тело (характер болида), оставляя за собой след, как падающий метеорит.
В семь часов утра по местному времени над тайгой близ фактории Вановары возник ослепительный шар, который казался ярче солнца. Он превратился в огненный столб, упершийся в безоблачное небо.
Прежде ничего подобного при падении метеоритов не наблюдалось. Не было такой картины и при падении несколько лет назад гигантского, рассыпавшегося в воздухе метеорита на Дальнем Востоке.
После световых явлений был слышен удар, многократно повторившийся, как повторяется удар грома, превращаясь в раскаты. Звук был слышен на расстоянии до тысячи километров от места катастрофы.
Вслед за звуком пронесся ураган страшной силы, срывавший с домов крыши и валивший заборы на расстоянии сотен километров.
В домах ощущались явления, характерные для землетрясений. Колебания земной коры были отмечены многими сейсмологическими станциями: в Иркутске, Ташкенте, Йене (Германия). В Иркутске (ближе к месту катастрофы) зафиксировано два толчка. Второй был слабее и, по утверждению директора станции, был вызван дошедшей до Иркутска с опозданием воздушной волной.
Воздушная волна была зафиксирована также и в Лондоне и дважды обошла земной шар.
В течение трех дней после катастрофы на территории Европы и Севере Африки в небе на высоте 86 километров наблюдались светящиеся облака, позволявшие ночью фотографировать и читать газеты.
Академик А. А. Полканов, находившийся тогда в Сибири, ученый, умевший наблюдать и точно фиксировать виденное, записал в дневнике: "Небо покрыто плотным слоем туч, льет дождь и в то же самое время необычайно светло. Настолько светло, что на открытом месте можно довольно свободно прочесть мелкий шрифт газеты. Луна не должна быть, а тучи освещены каким-то желто-зеленым, иногда переходящим в розовый, светом". Если бы этот загадочный ночной свет, замеченный академиком Полкановым, был отраженным солнечным светом, он был бы белым, а не желто-зеленым и розовым.
Спустя двадцать лет советская экспедиция Кулика побывала на месте катастрофы. Результаты многолетних поисков экспедиции точно переданы астрономом в рассказе.
Предположение о падении в тунгусскую тайгу грандиозного метеорита хотя и более привычно, но не объясняет:
а) Отсутствие каких-либо осколков метеорита.
б) Отсутствие кратера и воронок.
в) Существование в центре катастрофы стоячего леса.
д) Наличие после падения метеорита грунтовых вод под давлением.
е) Фонтан воды, бивший в первые дни катастрофы.
ж) Появление ослепительного, как солнце, шара в момент катастрофы.
з) Несчастные случаи с эвенками, побывавшими в месте катастрофы в первые дни.
Внешняя картина произошедшего в тунгусской тайге взрыва полностью совпадает с картиной атомного взрыва.
Предположение такого взрыва в воздухе над тайгой объясняет все обстоятельства катастрофы следующим образом.
Лес в центре стоит на корню, поскольку воздушная волна обрушилась на него сверху, обломав ветки и вершины.
Светящиеся облака - действие улетевших вверх остатков радиоактивного вещества на воздух.
Несчастные случаи в тайге - действие радиоактивных частичек, упавших в почву.
Возгонка, превращение в пар, всего влетевшего в земную атмосферу тела естественна при температуре атомного взрыва (20 миллионов градусов Цельсия) и, конечно, никаких его остатков найти было нельзя.
Фонтан воды, бивший сразу после катастрофы, был вызван образованием в слое мерзлоты трещин от удара взрывной волны.
Возможен ли взрыв радиоактивного метеорита?
Нет, невозможен. В метеоритах встречаются все те вещества, какие встречаются на Земле. Содержание, скажем, урана в метеоритах составляет около одной двухсотмиллиардной доли процента. Для возможности цепной реакции атомного распада явилось бы необходимым иметь урановый метеорит в исключительно чистом виде, да, кроме того, еще и в виде редчайшего, не встречающегося никогда в чистом виде изотопа Урана-235. Помимо всего, если даже и предположить такой невероятный случай, что в природе оказался такой кусок "рафинированного" Урана-235, то он не мог бы существовать, так как Уран-235 склонен к так называемому "спонтанному" распаду, непроизвольным взрывам некоторых своих атомов. При первом же таком непроизвольном взрыве предполагаемый метеорит взорвался бы сразу же после своего образования.
Если предположить атомный взрыв, то неизбежно будет предположение, что взорвалось радиоактивное вещество, полученное искусственным образом.
Откуда мог прилететь корабль, использующий радиоактивное топливо?
Ближайшая от нас звезда с предполагаемой около нее планетной системой находится в созвездии Лебедя. Это открыто нашим пулковским астрономом Дейчем. От нас до нее расстояние в девять световых лет. Чтобы преодолеть такое расстояние, нужно лететь со скоростью света в течение девяти лет!
Получить такую скорость межпланетному кораблю, конечно, невозможно. Может идти речь лишь о степени приближения к ней. Мы знаем, что элементарные частички материи - электроны движутся со скоростью до 300 тысяч километров в секунду. Если предположить, что в результате длительного разгона и корабль достиг бы такой скорости, мы получим, что рейс с планеты ближайшей к нам звезды в оба конца должен был бы занять несколько десятков лет. Однако здесь на помощь приходит парадокс Эйнштейна. Для людей, летящих со скоростью, близкой к скорости света, время двигалось бы медленнее, много медленнее, чем для тех, кто наблюдал бы за их полетом, пробыв в полете десятки лет, они обнаружили бы, что на Земле успели пройти тысячелетия…
Трудно говорить о продолжительности жизни неизвестных нам существ, но если предполагать такой полет с Земли, то путешественники, отправляясь в полет, должны посвятить ему всю свою жизнь до глубокой старости. Нечего говорить о более далеких звездах и их планетах.
Значительно реальнее было бы предположение о попытке перелета с более близкой планеты и прежде всего с Марса.
Что говорит астронавигация?
Марс движется вокруг Солнца по эллипсу, делая один оборот за 687 земных суток (1,8808 земных года).
Орбиты Земли и Марса сближаются в том месте, которое Земля проходит летом. Каждые два года Земля встречается в этом месте с Марсом, но особенно близко друг к другу они оказываются раз в 15–17 лет. Тогда расстояние между планетами сокращается от 400 миллионов до 55 миллионов километров (великое противостояние).
Однако нельзя рассчитывать, что межпланетному кораблю достаточно преодолеть только это расстояние.
Обе планеты движутся по своим орбитам: Земля со скоростью 30 километров в секунду, Марс - 24 километра в секунду.
Реактивный корабль, покидая планету, наследует ее скорость вдоль орбиты, направленную перпендикулярно к кратчайшему пути между планетами. Чтобы корабль мог лететь прямо, надо было бы уничтожить эту боковую скорость вдоль орбиты, бесполезно тратя на это огромную энергию. Выгоднее лететь по кривой, используя скорость вдоль орбиты и добавляя кораблю лишь ту скорость, которая позволит ему оторваться от планеты.
Для отрыва от Марса потребуется 5,1 километра в секунду, для отрыва от Земли - 11,3 километра в секунду.
Видный советский астронавигатор Штернфельд сделал точный подсчет маршрутов и сроков перелета межпланетного корабля, применительно к противостояниям 1907 и 1909 годов. Он получил, что марсианский корабль, исходя из условия наибольшей экономии горючего, вылетев в наиболее выгодное время с Марса, должен был достигнуть Земли или в 1907 или в 1909 году, но никак не в 1908! Однако при полете с Венеры, использовав противостояние Земли и Венеры в 1908 году, астронавты должны были прибыть на Землю 30 июня 1908 года (!).
Совпадение абсолютно точное, позволяющее делать далеко идущие предположения.
Соответственно этому перед великим противостоянием 1909 года марсиане, достигшие в 1908 году Земли, находились бы в наивыгоднейших условиях для возвращения на Марс.
Были ли сигналы с Марса?
О замеченных в 1909 году световых сигналах с Марса говорит статья "Марс и его каналы" сборника "Новые идеи в астрономии", вышедшего вскоре после великого противостояния 1909 года.
Общеизвестны сенсационные когда-то разговоры о приеме радиосигналов с Марса в начале двадцатых годов во время противостояний Земли и Марса.
То было время первого расцвета созданной гениальным Поповым радиотехники, появление первых общедоступных радиоприемников.
Я. Перельман в приложении к своей книге "Межпланетные путешествия" говорит, что в 1920 и 1922 годах во время сближения Марса с Землей земные радиоприемники принимали сигналы, которые по своему характеру не могли быть посланы земными станциями (очевидно, в виду имелась прежде всего длина волны, весьма ограниченная для передающих станций Земли того времени). Эти сигналы приписывались Марсу.
Падкий на сенсации Маркони, а также его инженеры выезжали в специальные экспедиции в Анды и Атлантический океан для улавливания марсианских сигналов. Маркони пытался поймать эти сигналы на волне 300 000 метров.