Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - Нейт Сильвер 11 стр.


Примерно в то же время на должность консультанта Red Sox был приглашен Билл Джеймс, который 25 годами ранее открыл эру «Sabermetric»[38], начав публиковать альманах под названием «Bill James Baseball Abstract». Нездоровая одержимость бейсбольной статистикой внезапно оказалась чем-то бо́льшим, чем простое хобби, – и как только я это понял, то сразу же принялся искать новую работу.

В течение двух лет после окончания колледжа я жил в Чикаго и работал консультантом по трансфертному ценообразованию в бухгалтерской компании KPMG. Работа довольно неплохая. Мои начальники и коллеги оказались дружелюбными и профессиональными, зарплата вполне достойной, и я чувствовал себя в безопасности.

Однако мое личное представление о по-настоящему вдохновляющей работе заключалось отнюдь не в том, чтобы рассказывать клиентам, как устанавливать цены на фабрике по производству телефонов в Малайзии, чтобы снизить размер налогов, или отправляться в шесть часов утра на самолет в Сен-Луи, чтобы оценить качество контрактов, использовавшихся в работе горнодобывающей компанией.

В этой работе было слишком мало риска, она оказалась чересчур разумной и рутинной для неугомонного 24-летнего человека, и мне стало скучно как никогда. Однако одно из ее преимуществ состояло в том, что у меня оставалась куча свободного времени. Поэтому в свое свободное время я начал создавать разноцветную таблицу, заполняя ее бейсбольной статистикой. Впоследствии именно она легла в основу PECOTA.

Во время учебы в колледже я также начал читать ежегодник «Baseball Prospectus», основанный в 1996 г. Гэри Хакебеем. Этот рыжий человек с неимоверными запасами энергии и сарказма пригласил на работу команду авторов новостной группы newsgroup rec.sport.baseball (бывшей в первые годы интернета авангардом статистического анализа спорта). Хакебей почуял возможность, которую предоставлял в то время рынок: Билл Джеймс перестал публиковать свои Abstracts в 1988 г., а большинство продуктов, призванных его заменить, либо были недостаточно хороши, либо прекратили свое существование во время длительных забастовок бейсболистов в 1994–1995 гг. Первый выпуск «Baseball Prospectus», опубликованный в 1996 г., распечатывался на лазерном принтере, из него по ошибке исчезла вся информация о клубе St. Louis Cardinals, и продано было всего 75 экземпляров. Однако у «Baseball Prospectus» быстро появились свои поклонники, а продажи начали расти в геометрической прогрессии практически каждый год.

«Baseball Prospectus» был настоящей сладостной мечтой любого фаната статистики. В нем собиралось неимоверное количество цифр, не только по игрокам основной лиги, но и по потенциальным игрокам, игравшим во второстепенных командах.

Тексты в бюллетене порой носили эзотерический характер, там часто упоминались герои мультсериала «Симпсоны», допускались шутки о полузабытых порнофильмах 1980‑х гг. и даже саркастические оценки нелюбимых издателем менеджеров различных команд.

Однако самыми важными публикациями этого издания были предсказания о том, как будет играть каждый игрок в следующем сезоне. Для этого Хакебей использовал созданную им самим систему под названием Vladimir. Казалось, что она будет следующим шагом в начатой Джеймсом революции.

Хорошая система бейсбольных прогнозов должна выполнять три основные задачи.

1. Принимать во внимание текущий статус статистики игрока.

2. Разделять навыки и удачу.

3. Понимать, каким образом изменяется результативность игрока по мере его взросления – эта закономерность известна под названием кривой старения.

Первая задача сравнительно проста. Бейсбольные соревнования, наиболее уникальные из основных американских видов спорта, всегда проводились на полях с нестандартными размерами. Среднему игроку значительно проще показывать хорошие результаты в уютном квадратном Фенвей-парке (контуры которого заданы компактными улицами Новой Англии), чем на напоминающем пещеру стадионе «Доджер», окруженном огромными парковками. Наблюдая за тем, как ведут себя игроки при игре дома и в гостях, мы можем рассчитать так называемый фактор парка, позволяющий учитывать степень сложности, с которой сталкивается игрок. Например, Фред Линн, основной игрок Red Sox в 1970‑е гг., добивался результата 0,347 во время игр в Фенвей-парке, но его результат на любом другом стадионе был равен лишь 0,264. Аналогичным образом, наблюдая за результатами игроков после перехода из Национальной лиги в Американскую лигу, мы можем довольно четко сказать, какая лига лучше, и оценить силу конкурентной позиции игрока.

Самый масштабный набор данных в мире

Решить вторую задачу – то есть разделить навыки и удачу – намного сложнее. Бейсбол выстроен таким образом, что в краткосрочной перспективе удача играет большую роль – даже лучшие команды проигрывают до трети матчей, и даже лучшие подающие не могут добраться до базы каждые три раза из пяти. Иногда удача не позволяет распознать подлинный уровень навыков игрока даже за целый год. Во время любого сезона бьющий, объективный результат которого 0,275, с вероятностью 10 % может добиться результата 0,300 и, соответственно, с той же вероятностью иметь результат 0,250. И это зависит только от одной лишь удачи{197}.

Хорошо продуманная система прогнозирования может оценить, какие статистические показатели сильнее зависят от удачи. Например, среднее количество попаданий битой по мячу более подвержено влиянию ошибок, чем количество хоумранов. Это особенно важно для питчеров[39], статистика которых невероятно непоследовательна. Если вы хотите предсказать, насколько успешной будет игра питчера, то вам стоит смотреть на количество страйкаутов[40] и уолков[41], а не на данные о его выигрышах и проигрышах в предыдущем сезоне, поскольку первый набор статистических данных выглядит более последовательным от года к году.

Как и при разработке любого прогноза, цель в данном случае состоит в выявлении основополагающей причины – выбивание в аут не позволяет отбивающим игрокам команды соперника добраться до базы, что, в свою очередь, не дает им получить дополнительные очки, а значит – и выиграть матч. Однако чем глубже вы копаете, тем больше шума окажется в системе: результаты питчера определяются не только качеством его ударов, но и факторами, которые он не в состоянии контролировать. Так, отличный питчер команды Seattle Mariners Феликс Эрнандес имел по итогам 2009 г. показатель выигрышей и поражений на уровне 19:5, а в 2010 г. этот показатель был 13:12 – и не потому, что Эрнандес плохо делал свою работу, а потому, что у Mariners’ в 2010 г. был на редкость неудачный состав подающих.

Подобные случаи происходят довольно часто, и если вы уделите изучению данных достаточно времени, то сможете найти их и сами. Пожалуй, именно бейсбол предлагает самый объемный массив данных в мире – практически все, происходившее на игровых полях основной лиги в течение последних 140 лет, скрупулезно и точно записывалось, а в крупных лигах играют сотни спортсменов. При этом, хотя бейсбол и считается командной игрой, матч строится в соответствии с четкой процедурой: питчеры по очереди сменяют друг друга, подающие «выходят к бите» один за другим. Поэтому игроки в значительной степени сами несут ответственность за свою личную статистику[42]. В игре возникает сравнительно немного проблем, связанных с чем-то комплексным и нелинейным. В ней просто выявить причинно-следственные связи.

Это значительно упрощает жизнь человеку, занимающемуся прогнозами в мире бейсбола. Гипотезы обычно можно проверить эмпирическим путем, что позволяет подтвердить или опровергнуть их с высокой степенью статистической достоверности. Что же касается прогнозирования в таких областях, как экономика или политика, где данные появляются значительно реже, – президентские выборы происходят один раз в четыре года, и нет возможности получать сотни новых данных ежегодно – вы не можете похвастаться столь же высокой степенью точности, и ваши прогнозы могут оказаться неверными значительно чаще.

Берегитесь – кривая старения!

Однако все, о чем шла речь выше, основывалось на предположении, что способности игрока не меняются год от года – и если бы мы только могли отделить сигнал от шума, то узнали бы все, что нам нужно. Но в реальной жизни навыки бейсболиста постоянно изменяются, и в этом кроется немалая проблема.

Изучив статистику по нескольким тысячам игроков, Джеймс обнаружил, что игра типичного из них{198} год от года совершенствуется до тех пор, пока его возраст не приблизится к отметке примерно в 30 лет, а начиная примерно с этого возраста навыки обычно начинают атрофироваться, что особенно заметно проявляется примерно к 35 годам{199}. И этот факт позволил Джеймсу сделать одно из самых значительных своих открытий – выявить кривую старения.

Изучив статистику по нескольким тысячам игроков, Джеймс обнаружил, что игра типичного из них{198} год от года совершенствуется до тех пор, пока его возраст не приблизится к отметке примерно в 30 лет, а начиная примерно с этого возраста навыки обычно начинают атрофироваться, что особенно заметно проявляется примерно к 35 годам{199}. И этот факт позволил Джеймсу сделать одно из самых значительных своих открытий – выявить кривую старения.

Гимнастки-олимпийки достигают пика своей карьеры в подростковом возрасте, поэты – после 30 лет; шахматисты – после 30{200}; экономисты – после 40{201}, а средний возраст CEO компаний из списка Fortune 500 равен 55 годам{202}. Игрок в бейсбол, как обнаружил Джеймс, достигает своего спортивного пика в возрасте 27 лет. У 60 % игроков из списка, включающего 50 самых известных бейсболистов, отмеченных наградами в период между 1985 и 2009 гг., возраст колебался в интервале между 25 и 29 годами, а возраст 20 % из них составлял ровно 27 лет. Именно в этом возрасте, судя по всему, возникает идеальное соотношение между физической и умственной формой, необходимой для игры (рис. 3.1).

Рис. 3.1. Кривая старения для подающего

Осознание этого факта – существование кривой старения – могло бы стать невероятно ценным для любой команды, ознакомившейся с работой Джеймса. В соответствии с принятыми правилами бейсболист не может стать профессиональным игроком, не связанным контрактом, до достаточно поздних этапов своей карьеры. Он получает право на этот статус, отыграв не менее шести полных сезонов в основной лиге (до этого момента он находится под полным контролем своего первого клуба и не может требовать у него полной оплаты по рыночным ставкам).

Поскольку типичный новичок оказывается в крупных лигах в возрасте 23 или 24 лет, он не может стать свободным игроком до 30-летнего возраста – то есть до того периода, когда пик его результативности уже минует. Команды платили многим профессиональным игрокам большие суммы в расчете на то, что они смогут оставаться столь же производительными, что и в возрасте до 30 лет; в реальности же их результаты обычно ухудшались, а поскольку контракты в главной бейсбольной лиге имеют определенные гарантии, у команды были связаны руки.

Однако кривая старения Джеймса рисовала слишком гладкую картину. Разумеется, средний игрок достигает пика в возрасте 27 лет. Но, как скажет вам любой человек, внимательно изучавший в детстве обратные стороны бейсбольных карточек, игроки стареют с разной скоростью. Боб Хорнер, третий бейсмен команды Atlanta Braves в 1980‑е гг., получил награду «Новичок года» в возрасте 20 лет и вошел в команду «Всех звезд», когда ему было 24 года; в то время многие считали, что он точно попадет в Зал бейсбольной славы. Однако к 30 годам, вследствие череды травм и неудачного перехода в команду Yakult Swallows японской лиги, он полностью покинул мир профессионального бейсбола. С другой стороны, великий Эдгар Мартинез из Seattle Mariners не имел постоянного контракта в крупных лигах до 27 лет. Однако ему все равно удалось пережить период расцвета своей спортивной карьеры, хотя и достаточно поздно – после 30 лет: и даже в 40 лет он возглавлял список лиги по количеству RBI[43].

Хотя случаи с Хорнером и Мартинезом и могут считаться исключением из правила, крайне редко уровень игры других бейсболистов изменяется в точном соответствии с гладкой траекторией кривой старения; скорее, нормой для них оказывается периодически нарушаемое равновесие взлетов и падений.

Реальные кривые старения наполнены шумом – причем значительным (рис. 3.2). В среднем они могут выглядеть довольно гладкими. Однако среднее подобно семье, имеющей 1,7 ребенка, – это всего лишь статистическая абстракция. Возможно, полагал Гэри Хакебей, в шуме есть сигнал, который не учитывала кривая Джеймса. Возможно, у игроков на сложных с точки зрения физических сил позициях навыки пропадают быстрее, чем у других. А возможно, карьера игроков, обладающих более атлетическим сложением, продолжительнее, чем у игроков, имеющих лишь один-два сильно развитых навыка.

Рис. 3.2. Вид кривых старения, на которых отражаются шумы, для различных подающих

На основе системы Хакебея была выдвинута гипотеза, согласно которой имеется 26 различных видов кривых старения, причем каждый из них применим к разным типам игроков{203}. Если Хакебей был прав, то появлялась возможность оценить, какая кривая в большей степени подходит для каждого игрока, и тем самым предсказать, как будет развиваться его карьера. Если кривая старения игрока была похожа на соответствующую кривую Боба Хорнера, то можно было бы ожидать, что пик его карьеры придется на более ранний возраст, а затем наступит раннее угасание. Если же его кривая больше напоминала кривую Мартинеза, то лучшие сезоны этого бейсболиста наступят в более зрелом возрасте.

Хотя системе Vladimir Хакебея и удалось сделать ряд правильных прогнозов, в целом она все же была ненамного более точной, чем медленные и устойчивые прогнозы Джеймса{204}, согласно которым одна и та же кривая старения применялась к каждому игроку. Отчасти проблема заключалась в том, что число 26 для количества категорий Хакебея было выбрано случайным образом, а для того, чтобы определить, к какой группе относится игрок, требовалось скорее искусство, а не наука.

Но, чтобы войти в число элитных игроков в бейсбол, человек должен обладать широким диапазоном физических и ментальных навыков: мышечной памятью, физической силой, координацией между глазами и руками, скоростью удара битой, распознаванием направления полета мяча и силой воли, позволяющей сохранять концентрацию даже в сложные для команды периоды. Понятие о существовании различных видов кривых старения, вытекающее из созданных системой Vladimir, казалось, более точно отражало всю сложность, присущую человеческой природе.

При разработке PECOTA я попытался заимствовать некоторые элементы у Хакебея, а некоторые – у Билла Джеймса. В выпуске Baseball Abstract за 1986 г. Джеймс представил так называемые оценки подобия, которые (как и предполагает их название) были призваны выявить статистическое подобие между статистикой карьеры любых двух игроков основной лиги. Концепция была сравнительно простой. Для начала каждому из двух игроков присваивалось по 1000 баллов, а затем при наличии между игроками различий по тому или иному параметру соответствующие баллы вычитались{205}. У игроков с высокой степенью подобия итоговый балл мог составлять 950 или даже 975, однако в других случаях расхождения накапливались достаточно быстро.

Оценки подобия могут оказаться невероятно полезными любому человеку с хорошим знанием истории бейсбола. Вместо того чтобы изучать статистику игрока в вакууме, специалисты могут оценить исторический контекст происходящего. Например, статистические результаты Педройи до достижения им возраста 25 лет были идентичны результатам Рода Кэрью, великого игрока из Панамы, возглавлявшего Minnesota Twins в 1970‑х, или результатам Чарли Герингера, звезде команды Tigers времен Великой депрессии. Оценки подобия Джеймса позволяют проводить ретроспективный анализ, предоставляя возможность оценивать прошлые события. Например, с его помощью можно проанализировать, насколько игрок заслуживает, чтобы его приняли в Зал славы.

Если вы считали, что ваш любимый игрок действительно заслуживает это, и могли увидеть, что это удалось 9 из 10 игрокам с идентичной статистикой, то у вас были все шансы верить в успех.

Но можно ли использовать оценки подобия и для предсказания? Например, если мы могли выявить сотню игроков, наиболее сопоставимых с Педройей по возрастным критериям, то в какой степени результаты этих игроков за всю карьеру могли подсказать нам, как будет развиваться карьера Педройи?

Меня заинтересовала эта идея, и так, понемногу, PECOTA начала свое существование в те долгие дни, которые я проводил в KPMG в 2002 г. Она приобрела форму гигантской и разноцветной электронной таблицы Excel. Этот выбор был довольно случайным, поскольку именно Excel был одним из моих основных рабочих инструментов в KPMG (каждый раз, когда мимо моего стола проходил кто-то из начальников, он предполагал, что я усердно тружусь над какой-то особенно сложной моделью для одного из наших клиентов{206}).

Постепенно, отнимая пару часов от работы и по нескольку часов от сна, я смог разработать базу данных, включавшую более чем 10 000 позиций «игрок – сезон» (я учел каждый сезон основной лиги, начиная со времен Второй мировой войны{207}). Кроме этого, я разработал алгоритм, позволяющий сравнивать любого игрока с другим. Алгоритм был чуть более сложным, чем алгоритм Джеймса, и предполагалось, что он сможет в полной мере воспользоваться изобилием данных, присущих бейсболу. В нем был заложен иной метод сравнения набора игроков, метод, называемый на техническом языке метод ближайшего соседа[44]. Также он учитывал более широкий набор факторов, включая рост и вес игрока, которые обычно принимаются во внимание лишь скаутами.

Назад Дальше