Стой, кто ведет? Биология поведения человека и других зверей - Дмитрий Жуков 9 стр.


Первая функция – регуляторная. Связанный гормон не взаимодействует с тканями-мишенями, т. е. та часть молекул секретированного гормона, которая связалась с белком, биологически не активна.

Реализация гормонального сигнала происходит в пять этапов: 1) синтез гормона 2) секреция гормона 3) транспорт гормона 4) взаимодействие гормона с клеточным рецептором 5) инактивация гормона и вывод его из организма

В результате эффективная концентрация гормона всегда меньше, чем его общая концентрация в крови. Чем выше в ней содержание белка, связывающего молекулы гормона, тем меньше эффективная концентрация гормона, т. е. возможный биологический эффект. Следовательно, биологическая активность гормона регулируется содержанием в крови белков, которые связывают этот гормон. Например, при беременности возрастает количество белка, связывающего кортизол. При возникновении потребности тканей в гормоне увеличиваются расщепление гормон-белкового комплекса и эффективная концентрация, а содержание биологически активного гормона в крови возрастает. Таким образом, регулирующая функция белков, связывающих гормоны, тесно связана со второй функцией – запасающей.

Вторая – запасающая — функция связывания гормонов с белками крови определяется тем, что в крови имеется постоянный запас гормона, который может быть легко переведен в активное состояние. При снижении концентрации свободного гормона часть связанного высвобождается из комплекса с белком.

Третья функция связывания молекул гормона белками крови – транспортная. В некоторых случаях гормон, связанный с транспортным белком, быстрее проникает в клетку-мишень.

После синтеза, секреции и транспорта начинается взаимодействие гормона с клеткой-мишенью. Оно обеспечивается клеточными рецепторами. Они представляют собой сложные белки и расположены в клеточной мембране (рецепторы пептидных гормонов), в цитоплазме клетки (рецепторы стероидных гормонов) и в клеточном ядре (рецепторы трийодтиронина и тироксина).

Основная характеристика рецепторов – их специфичность. Благодаря этому свойству рецепторов гормоны, распространяясь по всему организму, действуют не на все ткани и органы, а только на те, клетки которых содержат рецепторы данного гормона. Рецепторы обладают гораздо более высокой специфичностью, чем транспортные белки крови. Почти все рецепторы связывают только один определенный гормон, причем в гораздо большей степени, чем его ближайшие химические аналоги. В то же время большинство гормонов связываются с несколькими подтипами рецепторов, и специфичность этих подтипов различна. Таким образом достигается тонкое регулирование функций клетки-мишени.

Связывание гормона с рецептором вызывает цепь сложных биохимических реакций, конечным итогом которых является изменение синтеза определенных белков, что и принято считать биологическим эффектом данного гормона. Поскольку гормональный эффект проявляется только в результате взаимодействия с рецептором, некоторые исследователи полагают, что ключевая молекула в системе гуморальной регуляции – рецептор, а не гормон. Не останавливаясь здесь на критике этой концепции (неполное соответствие гормонального эффекта и количества рецептора в ткани и т. п.), отметим, что мы будем рассматривать именно гормоны как основное звено в системах гуморальной регуляции по следующим причинам.

Во-первых, методически определить гормоны гораздо легче, чем рецепторы. Финансовые затраты на приобретение реактивов для определения гормонов значительно меньше, чем на покупку реактивов для установления содержания рецепторов. Самые сложные из гормонов представляют собой цепочку из нескольких десятков аминокислот. В то же время рецепторы – это сложные белки, которые могут состоять из десятков тысяч аминокислот, обладают сложной структурой и легко разрушаются при биохимических манипуляциях. Концентрация гормонов в тканях организма значительно выше концентрации рецепторов в тех же тканях. Часто для определения содержания гормона достаточно одной сотой миллилитра крови, а для анализа рецепторов требуется порой несколько граммов ткани. Гормоны находятся в крови, часть которой можно взять для анализа почти безболезненно и без существенных последствий для живого организма. Рецепторы находятся в тканях, что требует более серьезного вторжения в организм. В некоторых случаях вовсе невозможно определить содержание рецепторов у живого организма, например в структурах головного мозга человека.

Во-вторых, мы не можем в процессе эксперимента менять содержание рецепторов в тканях, тогда как изменить уровень гормона удается легко и с незначительными финансовыми затратами. Довольно просто ввести дополнительное количество гормона, сделав инъекцию, а уменьшить его количество можно введением вещества, блокирующего синтез или секрецию гормона, а также удалив отдельную железу (в эксперименте на животном). Молекулярно-генетические методы, позволяющие изменить количество рецепторов в тканях, появились только в последние годы. Они остаются еще очень дорогими и громоздкими, а кроме того, имеют существенные методические ограничения.

Таким образом, экспериментальных данных о содержании гормонов в крови при разных состояниях организма в тысячи раз больше, чем о содержании рецепторов в тканях. Что же касается работ, выполненных на человеке, то количество исследований рецепторов в миллионы раз меньше, чем количество исследований уровня гормонов. Таким образом, в этой книге основное внимание уделено изменению уровня гормона в крови, а не активности рецепторного аппарата клетки.

Итак, первые четыре этапа передачи гормонального сигнала – это синтез, секреция, транспорт белками крови и связывание с рецепторным аппаратом в клетках тканей. Заключительным, пятым, этапом передачи гуморального сигнала является инактивация гормона и вывод его из организма. Нарушение метаболизма гормона может привести к изменениям в работе всей эндокринной системы. При замедленной инактивации однократное введение гормона способно вызвать длительный или же неожиданно сильный эффект. В норме время полужизни пептидных гормонов составляет несколько минут, а стероидных – несколько часов. Многие синтетические производные гормонов значительно эффективнее природных аналогов именно потому, что они медленно подвергаются инактивации в процессе обмена веществ.

Рассматривая здесь гормон как основное звено эндокринной системы, будем все-таки помнить, что уровень гормона в крови – не исчерпывающая характеристика состояния системы «железа – гормон – кровь – орган-мишень – биологический эффект». Общее состояние эндокринной системы зависит от этапов синтеза и секреции гормона, его транспорта, т. е. связывания белками крови, от состояния системы рецепторов в клетке-мишени и метаболизма гормона.

Биологическая активность эндокринной системы может меняться, хотя содержание гормона в крови остается неизменным. Изменения связаны с нарушениями в транспорте, рецепции или катаболизме молекул гормона. Например, длительный прием оральных контрацептивов достаточно часто приводит к нарушениям либидо. У таких женщин обнаружено повышенное содержание транспортного белка – глобулина, связывающего эстрогены. Другой пример – для прерывания беременности на ранних сроках применяются вещества, нарушающие связывание прогестерона с его клеточными рецепторами. Биологический эффект обеспечивается изменением этапа взаимодействия гормона с рецептором. Еще один пример – препараты лакрицы (солодки), широко используемые для лечения бронхитов, трахеитов и прочих болезней верхних дыхательных путей. Эти лекарства содержат вещества, тормозящие инактивацию глюкокортикоидов в процессе обмена веществ. В результате повышается содержание в крови глюкокортикоидов, прежде всего кортизола, подавляющего воспалительные процессы. Эти лекарства не влияют на систему синтеза и секреции гормонов и не нарушают ее функционирование. Поэтому препараты лакрицы широко применяются как безопасные противовоспалительные средства.

Поливалентность гормонов

Опасность гормональных препаратов связана с тем, что каждый гормон воздействует не на одну ткань или орган. Любой гормон имеет несколько тканей-мишеней (рис. 2.7).


Рис. 2.7. Поливалентность гормонов. Каждый гормон связывается с рецепторами (R), расположенными в клетках разных тканей. Эти рецепторы имеют общее свойство – специфичность, т. е. способность связывать именно данный гормон и не взаимодействовать с другими гормонами, имеющими схожую структуру. Рецепторы для одного и того же гормона, находящиеся в разных тканях, несколько отличаются по своей специфичности. Эти различия и являются биологической основой для создания лекарственных препаратов путем модификации естественных гормонов. Побочные эффекты, обусловленные взаимодействием с остальными тканями, у каждого из таких препаратов сведены к минимуму, поскольку его молекула модифицирована так, чтобы она связывалась только с рецепторами той ткани, для влияния на которую предназначена. Абсолютно полной специфичности достичь не удается, поэтому анаболики, чье действие направлено на мышечную ткань, влияют и на гипоталамус, где они тормозят синтез гонадолиберина (ЛГ-РГ), что и приводит к расстройству репродуктивной функции

Каждый гормон действует на многие органы и ткани

Одна из таких мишеней – центры (структуры мозга и железы), управляющие секрецией этого гормона. Взаимодействие гормона с центром, регулирующим его синтез и секрецию, называется регуляцией по механизму обратной связи. Глюкокортикоиды тормозят синтез и секрецию кортиколиберина и АКТГ; гормоны щитовидной железы – тиреолиберина и тиреотропина; половые гормоны – синтез и секрецию гонадолиберина. Лечение глюкокортикоидами обычно продолжается долго, более того, часто используются очень большие дозы препаратов. В таких случаях торможение секреции кортиколиберина и АКТГ может быть настолько длительным, что будет продолжаться и после прекращения лечения. В результате развившегося дефицита функции коры надпочечников могут возникнуть тяжелые расстройства (рис. 2.8). Поэтому в качестве лекарственных препаратов чаще используют не естественные гормоны, а модифицированные молекулы. Модификация естественных гормонов с целью получения лекарственных препаратов проводится таким образом, чтобы уменьшить их влияние на все ткани, кроме одной, для лечения которой и предназначено данное лекарство. Опаснейшим из побочных эффектов гормональных препаратов является торможение ими гипоталамических и гипофизарных центров, в которых происходит синтез либеринов и тропных гормонов.



Рис. 2.8. Обратная связь в эндокринных системах. Слева показаны связи в эндокринных системах в состоянии покоя. Гормоны периферических желез (коры надпочечников, щитовидной железы и гонад) тормозят синтез и секрецию соответствующих гипоталамических рилизингов и гипофизарных тропных гормонов. Справа показаны те же связи на фоне введения гормона извне. Большая доза экзогенного гормона резко снижает синтез и секрецию эндогенных гормонов на всех трех уровнях эндокринной системы. Поэтому при завершении лечебного гормонального курса дозу препарата снижают очень медленно, чтобы заторможенная по механизму обратной связи система «гипоталамус – гипофиз – железа» восстановила нормальную функцию


Решить эту задачу полностью, т. е. изменить молекулу гормона так, чтобы он связывался исключительно с рецепторами периферических тканей, не удается. Например, анаболические стероиды являются андрогенами, модифицированными так, чтобы воздействовать главным образом на мышечную ткань. Но анаболики все же взаимодействуют, хотя и слабее, чем натуральные андрогены, с клетками гипоталамуса, синтезирующими гонадолиберин. Анаболики тормозят синтез и секрецию гонадолиберина в гипоталамусе. Это приводит к сниженной продукции гипофизарных лютеинизирующего и фолликулостимулирующего половых гормонов и, соответственно, к нарушению функции периферических половых желез. В результате бесконтрольный прием анаболиков приводит к расстройству половой функции.

Регуляция по механизму отрицательной обратной связи и гормональные влияния на поведение

Если гормон тормозит активность центров, которые стимулируют его синтез и секрецию, такая обратная связь называется отрицательной. Если повышение секреции гормона ведет к активации стимулирующих центров, то обратная связь называется положительной. Положительная обратная связь почти не встречается в гуморальных регуляторных механизмах. В то же время роль отрицательной обратной связи в регуляции эндокринной системы исключительно велика.

Гормоны тормозят собственную секрецию по механизму отрицательной обратной связи

Регуляция эндокринных функций по механизму отрицательной обратной связи осуществляется не только путем торможения синтеза и секреции либеринов и тропных гормонов. Другим механизмом обратной связи является регулирование количества рецепторов уровнем гормона. При повышении концентрации гормона выше физиологически нормального уровня количество его рецепторов в тканях-мишенях снижается, а при уменьшении концентрации гормона количество рецепторов в клетках повышается. Это правило справедливо для подавляющего большинства гормонов. Наличие механизма регуляции по отрицательной обратной связи обеспечивает стабильность системы, в данном случае – постоянство гормональных влияний на клетки.

Тесная взаимосвязь между уровнем гормона и количеством его рецепторов, торможение гипоталамических центров по механизму отрицательной обратной связи, регуляция одной функции несколькими гормонами, а также взаимодействие между различными эндокринными системами приводит к тому, что биологический эффект зависит не столько от концентрации гормона, сколько от ее динамики. Особенно заметно это применительно к психотропным эффектам гормонов.

Количество рецепторов в тканях-мишенях уменьшается при длительном увеличении концентрации гормона в крови

В главе 8 рассматривается предменструальный синдром в качестве примера аффективного расстройства, вызываемого быстрым падением содержания прогестерона в крови в конце менструального цикла. Сезонные изменения в половом поведении человека и сезонные обострения аффективных расстройств (так называемая осенняя депрессия) связаны с быстрым изменением секреции мелатонина (см. главу 5).

Гормоны оказывают определяющее влияние на поведение во время развития организма (половая дифференцировка мозга у эмбриона, половое созревание подростков). В эти периоды концентрация гормонов меняется очень быстро из-за роста и дифференцировки тканей половых желез, поэтому гормональные вмешательства могут радикально изменить поведение человека или животного.

Таким образом, биологические, особенно психотропные, эффекты гормонов зависят в большей степени от скорости изменения концентрации гормона в крови, чем от абсолютного значения этой концентрации. Это положение важно в связи с тем, что широко распространено представление об определяющей роли уровня гормонов в крови для проявления таких форм поведения, как половое, агрессивное и асоциальное. Это представление не соответствует действительности, что подтверждают многочисленные и разнообразные исследования. Точнее, прямая зависимость между содержанием гормонов и поведением обнаруживается только при сравнении полярных групп: кастрированных самцов, у которых нет половых гормонов, и у носителей хромосомных мутаций ХУУ с очень высоким содержанием тестостерона.

Психотропный эффект гормона зависит от скорости изменения его концентрации в крови, а не от абсолютного значения этой концентрации

В первой группе почти отсутствуют аберрантные поведенческие формы, а во второй они усилены. Между этими двумя группами располагается группа самцов (мужчин), у которых не обнаружена зависимость между уровнем секреции тестостерона и поведением. Для проявления полового, агрессивного и асоциального поведения необходим определенный, небольшой уровень тестостерона. Выраженность же поведения зависит от факторов внешней среды, в психологических терминах – от воспитания. Например, крысята, выращенные в присутствии враждебно настроенного отца, оказались значительно агрессивнее своих собратьев, у которых не было опыта таких контактов. Быки, имевшие подобные контакты, продолжали демонстрировать агрессивное поведение и после того как были кастрированы.

Таким образом, колебания уровня циркулирующего гормона не сопровождается пропорциональными колебаниями выраженности поведенческих форм, которые этот гормон обеспечивает. Это обусловлено регуляцией эндокринных функций по механизму отрицательной обратной связи.

Взаимодействие эндокринных систем: прямая связь, обратная связь, синергизм, пермиссивное действие, антагонизм

Как уже было упомянуто, отдельные эндокринные железы и их гормоны взаимодействуют друг с другом, обеспечивая функциональное единство организма. Между эндокринными железами может существовать прямая связь: гипоталамические гормоны (рилизинг-гормоны) стимулируют секрецию гипофизарных гормонов. Тропные гормоны гипофиза стимулируют секрецию гормонов периферических желез. Помимо прямых связей, в любой системе существуют управляющие, или обратные связи. Синергичное действие гормонов заключается в сходном биологическом эффекте их действия. И адреналин, и глюкагон увеличивают содержание глюкозы в крови. В отличие от синергизма пермиссивное действие состоит в том, что один гормон сам по себе не обладает биологическим эффектом, но усиливает действие другого гормона.

Существует пять типов взаимодействия эндокринных систем: 1) один гормон стимулирует синтез другого; 2) один гормон тормозит синтез другого; 3) два гормона оказывают на клетки организма одинаковый эффект; 4) один гормон усиливает действие другого на клетки организма, хотя сам по себе не влияет на данную функцию; 5) два гормона оказывают на клетки организма противоположный эффект

Назад Дальше