Введение в поведение. История наук о том, что движет животными и как их правильно понимать - Борис Жуков 28 стр.


Захави предположил, что выбор самок имеет глубокий смысл: если уж самец с таким хвостом (рогами, глазными стебельками и т. д.) ухитрился дожить до брачного возраста – значит, какие-то не менее важные, но скрытые, не воспринимаемые непосредственно достоинства (например, устойчивость к холоду, жаре, болезням, эффективность утилизации пищи и т. д.) у него, скорее всего, намного выше среднего. А значит, и дети от такого отца будут самыми лучшими – особенно дочери, у которых эти хвосты-рога в любом случае не вырастут и которым, следовательно, не придется тратить на них ресурсы. Получается, что гипертрофированные структуры – это фора, которую их обладатели дают другим самцам в борьбе за существование. И именно по этой форе самки опознают в них сильных игроков и стремятся заполучить их в мужья. Отсюда и название – «теория гандикапа», то есть форы.



Звучит вроде бы убедительно, но неужели пава при виде павлина с особенно роскошным хвостом проделывает в уме все эти логические выкладки? Любой социобиолог с негодованием отвергнет такое предположение. «Чтобы сделать подобные определения более ясными и сократить их, биологи и прибегают к антропоморфным уподоблениям: например, говорят, что животное „выбирает“ сделать то-то и то-то или следует определенной стратегии. Эти метафоры не должны ввести читателя в заблуждение и заставить его думать, будто животные совершают сознательный выбор… поступки каждого из них генетически запрограммированы, они обусловлены их анатомией и инстинктами», – поясняет подобные фигуры речи известный орнитолог и популяризатор Джаред Даймонд. Иными словами, пава никаких расчетов не делает – просто естественный отбор на протяжении многих поколений благоприятствовал тем павам, которым нравились ухажеры с самыми длинными хвостами.

Но как он мог это делать? Предполагается, что оба признака – необычно пышный хвост самца и слабость самки именно к таким хвостам – независимы и должны появиться случайно в одной и той же популяции и более-менее в одно и то же время (чтобы, когда носитель одного из них войдет в брачный возраст, носитель другого не успел из него выйти). При этом первый обладатель пышного хвоста отнюдь не обязательно будет иметь какие-то «скрытые достоинства»: это лишь статистическая корреляция, проявляющаяся только в большом числе случаев. Их пока нет, а значит, отбор пока не будет благоприятствовать «гену любви к хвостам». В то же время сам по себе, вне выбора самок, такой хвост скорее вреден (демаскирует, ухудшает летные качества). Значит, пока такие хвосты нравятся только одной самке-мутантке, отбор не будет содействовать и распространению «гена пышнохвостости», даже скорее будет работать против него. Получается замкнутый круг: пышный хвост не дает преимущества, пока нет множества предпочитающих его самок, а тяга к таким хвостам бесполезна, пока нет множества обладающих ими самцов[120]. А естественный отбор – не профессор социобиологии, просчитывать выгоды заранее он не умеет и поддерживает только то, что выгодно здесь и сейчас.

Между тем в гипертрофии «гандикапных» структур нет ровным счетом ничего загадочного, если вспомнить о феномене сверхстимулов (см. главу 4). Мы уже говорили, что, как только тот или иной признак начинает выполнять функцию полового релизера, его дальнейшая эволюция неизбежно будет идти в сторону наибольшей выраженности, по сути дела – в сторону приближения к сверхстимулу. То, что с человеческой точки зрения результат такой эволюции может выглядеть довольно гротескно, – проблема не эволюции, а человеческого восприятия. (Как мы помним, «идеальный образ мамы-чайки» в представлении птенцов вовсе не похож на то, как видит чайку человек.) Нарастание выраженности признака будет идти до тех пор, пока либо он не совпадет со сверхстимулом, либо связанные с этим неудобства и опасности не перевесят выигрыша в привлекательности.

Косвенным образом это подтверждается тем, что «гандикапные» признаки и даже выраженный половой диморфизм редко встречаются у видов, где процесс формирования пары достаточно длителен, и совсем не встречаются у тех, у кого в выращивании потомства участвуют оба родителя и вклад самца существенен для выживания детей. Это можно наблюдать даже у видов, принадлежащих к одному семейству, – например, куриных. Участие самцов павлинов, фазанов, индюков в продолжении рода заканчивается совокуплением, при этом один самец в один сезон может осчастливить своими генами изрядное число самок – если будет достаточно привлекателен. Это уравновешивает повышенную вероятность его гибели из-за обремененности гротескными признаками. С точки зрения естественного отбора риск оправдан и относительно невелик: дополнительная опасность грозит только самцу, его многочисленные дети вырастут без него так же успешно, как и с ним. А вот самцу куропатки во время насиживания предстоит подменять подругу на гнезде, а потом на пару с ней (а если с ней что-то случится, то и одному) водить и беречь птенцов до подъема на крыло. Демаскирующие «гандикапные» признаки создали бы дополнительный риск не только для него самого, но и для его птенцов. И у куропаток мы не видим ни пышных хвостов, ни яркой, бросающейся в глаза окраски. Петушок куропатки отличается от курочки разве что скромными красными «бровями», да и они заметны лишь в сезон активного образования пар. Хотя вроде бы логика «гандикапной гипотезы» должна быть одинаково справедливой для куропаток и павлинов.

Но вернемся к теориям социобиологов. Теория Захави – не единственный пример того, как в их построениях разговор об объективных эволюционных выгодах то и дело незаметно съезжает на субъективные расчеты и прикидки индивида. Такова же, например, теория «многих отцов», предложенная антропологом Сарой Хрди из Калифорнийского университета в Дэвисе для объяснения происхождения скрытой овуляции у предков человека. По мнению Хрди, скрытая овуляция нужна для предотвращения инфантицида: самцы, имеющие дурную привычку убивать детенышей, рожденных самкой от других самцов, не будут это делать, зная, что это может быть их собственный отпрыск. Нетрудно показать, что в этом случае никакие оговорки насчет «метафор» и «простоты изложения» не работают: такая защита детей могла бы быть эффективной только в том случае, если потенциальный детоубийца сознательно заботится о том, как бы ненароком не убить собственного детеныша. На то, что не воспринимается органами чувств, а лишь логически допустимо, не может срабатывать никакой инстинкт.

С годами все отчетливее стала проявляться еще одна неустранимая слабость социобиологии. Схемы, в которых фигурировали «ген альтруизма», «ген групповой сплоченности», «мутации, способствующие склонности всерьез влюбляться», и тому подобные абстракции, выглядели красиво и убедительно до тех пор, пока невозможно было проследить механизмы связи между генами и поведением. Было понятно, что первые сильно влияют на второе, но как именно они это делают – оставалось совершенно неизвестным. Конечно, специалисты и тогда понимали, что любой поведенческий акт – результат работы множества разных генов, сложным образом взаимодействующих между собой и с сигналами из окружающей среды. Но почему бы не предположить, что один аллель некого гена повышает вероятность, скажем, проявления заботы о потомстве по сравнению с другим аллелем того же гена? Тогда можно будет оперировать этой «заботой о потомстве» как старым добрым менделевским наследственным признаком – разумеется, произнося время от времени ритуальные оговорки насчет «склонности», «предрасположенности» и «сложной организации генетического контроля поведения». Более того – предполагаемую эволюцию каждого такого гипотетического «гена» и связанного с ним поведения можно моделировать изолированно, отдельно от эволюции других аналогичных «генов», рассматривая все поведение организма как мозаику почти независимых функциональных блоков. Это сулит головокружительные перспективы: ведь мы до сих пор не знаем, как именно кодируются в геноме врожденные программы поведения, да и вообще не очень умеем работать с целостными генетическими программами. А вот с отдельными генами, да еще и представленными разными версиями, работать куда легче.

Туман, скрывающий цепь причин и следствий между последовательностью нуклеотидов в молекуле ДНК и поведением обладателя этой молекулы, все еще весьма плотен, но сегодня нам иногда удается различить в нем контуры отдельных звеньев этой цепи. И почти всякий раз при этом оказывается, что конкретные нейробиологические и нейрохимические механизмы невозможно отождествить ни с какими элементами социобиологических схем – и наоборот.

Известно, например, что в Х-хромосоме человека (и других млекопитающих) среди прочих генов есть ген, кодирующий фермент моноаминоксидазу А (МАО-А). Этот фермент занимается утилизацией некоторых нейромедиаторов и гормонов. У человека ген МАО-А известен в двух версиях, различающихся своей регуляторной частью (промотором). Это приводит к тому, что у обладателей одной версии гена активность МАО-А заметно ниже, чем у обладателей другой. Поскольку этот ген находится в Х-хромосоме, у мужчин есть только одна его копия. Так вот, оказывается, что обладатели «неактивной» версии более склонны к насилию и нарушению социальных норм.

Казалось бы, вот прекрасная модель для социобиологического подхода: ген, который без всякой натяжки можно назвать «геном агрессии» или, наоборот, «геном социализации». Но как ее истолковать? Если мы предполагаем, что эволюция человека шла в сторону усиления социального контроля над агрессивностью и сексуальностью, то придется допустить, что первичной была именно «неактивная» версия. Но сам характер различия говорит о том, что исходная форма – именно «активная», а «неактивная» – результат мутации. Но как тогда она смогла так распространиться (среди белых американцев частота «неактивной» версии составляет 33 %, а в некоторых восточноазиатских популяциях превышает 60 %)? Получается, что генные частоты менялись в одну сторону, а поведение их обладателей эволюционировало в прямо противоположную!



В довершение всего обнаружилось, что эффект «неактивной» МАО-А сильно зависит от обстоятельств начального периода жизни индивидуума: те носители «неактивной» версии фермента, которые выросли в нормальных любящих семьях, склонны к насилию не больше, чем счастливые обладатели «активной» МАО-А. Это ставит под сомнение корректность уподобления социобиологически значимых качеств менделевским признакам – и уж во всяком случае не позволяет нам рассматривать поведение как механическую результирующую работы того или иного числа независимых друг от друга генов. А ведь это всего лишь одно конкретное исследование, выхватившее одно-единственное звено в цепочке неизвестной длины!

Все это приводит к нарастающему разочарованию исследователей поведения в социобиологическом подходе. Хотя сегодня он остается чрезвычайно распространенным и в самом деле позволяет решать множество частных задач и выявлять причинно-следственные связи, невидимые с иных точек зрения, уже ясно: по-настоящему глубоких прорывов в понимании поведения животных от социобиологии ждать не приходится.

Глава 8

Работа с умом

Чем измерить интеллект?

Если социобиология – порождение эволюционного теоретизирования и попыток моделирования эволюции, то другое мощное направление в науке о поведении животных – столь же прямое порождение когнитивной революции (см. главу 6). Как мы уже говорили, в первое десятилетие своего существования когнитивизм почти не затрагивал исследований в области реального поведения животных, но сразу было ясно, что это только вопрос времени. Тем более что исследования когнитивных способностей животных имели собственную богатую традицию: об «уме животных» писали античные и средневековые авторы и натуралисты XVII–XVIII веков, с попыток оценить и исследовать эти способности начиналась зоопсихология во второй половине XIX века, и все школы и направления в науках о поведении отдавали им большую или меньшую дань. Особенно впечатляющих результатов достигли в 1910–1930-х годах немецкий исследователь Вольфганг Кёлер и его сотрудники – их исследования интеллекта человекообразных обезьян намного опередили свое время. В опытах Кёлера шимпанзе, в частности, успешно добывали высоко подвешенное лакомство, составив из коротких трубок длинную палку или соорудив из ящиков пирамиду, на которую можно было взобраться. При этом у обезьян не было возможности научиться этому путем подражания, а их поведение во время решения задачи совершенно не походило на «метод проб и ошибок».

Павлов и его школа поначалу восприняли опыты Кёлера весьма критически. Однако Иван Петрович всю жизнь придерживался твердого убеждения, что научные разногласия всегда можно разрешить экспериментом, а если результаты чьих-то опытов кажутся сомнительными, то первым делом надо попробовать эти опыты повторить. Специально для проверки экспериментов Кёлера павловский институт приобрел двух шимпанзе. Результаты проведенных с ними опытов оказались настолько красноречивыми, что Павлов, анализируя их на институтском семинаре, решительно отмел попытки своих сотрудников свести поведение обезьян к той или иной комбинации условных рефлексов: «…когда обезьяна строит вышку, чтобы достать плод, это условным рефлексом не назовешь. Это есть случай образования знания, улавливания нормальной связи вещей, зачатки того конкретного мышления, которым мы орудуем».

Можно только подивиться открытости ума и интеллектуальной отваге ученого, который и в 86 лет готов осознать ограниченность главного достижения своей жизни и непредвзято взглянуть за пределы собственной концепции. Трудно сказать, как сложилась бы история изучения интеллекта животных, если бы у Павлова хватило времени и сил развернуть полноценные исследования по этой тематике. Но патриарх физиологического подхода к поведению прожил после этого семинара всего три месяца, а его преемники предпочли не соваться в неизвестную область, для исследования которой не было ни строгих методов, ни теоретической основы.

Это, впрочем, соответствовало тенденциям в мировой науке о поведении: для этологов проблема интеллекта была интересной, но мало связанной с основной тематикой их работ (тем более что их главный козырь – морфологический подход к поведению – в этой области был практически неприменим), а бихевиористы вообще не видели в интеллекте ничего, кроме результатов предшествующего обучения. Однако примерно в середине 1960-х годов когнитивная революция вновь сделала эту тематику чрезвычайно модной – и работы по когнитивным способностям животных хлынули рекой. Спустя еще десятилетие видный американский физиолог Дональд Гриффин (тот самый, который еще в 1940-е годы разобрался в механизме эхолокации у летучих мышей и, в частности, доказал ультразвуковую природу их сигналов) прямо поставил вопрос о существовании у животных разума и сознания.

Утверждение Гриффина вызвало яростные споры, не утихающие до сих пор, но, по сути, он лишь сказал вслух то, что было к этому времени на уме у многих. Термин «когнитивные процессы» с самого начала был в значительной мере благопристойным эвфемизмом: в первую очередь последователей нового направления интересовали, конечно, именно интеллектуальные возможности животных. Но чем и как их хотя бы зарегистрировать и измерить – а главное, как сравнить эти возможности для существ с совершенно разным устройством тела и образом жизни? Понятно, что предлагать, скажем, дельфину те задачи, которые Кёлер предлагал шимпанзе, бессмысленно – не потому, что он глупее, а потому, что плавниками трубки не состыкуешь. Но как тогда сравнить умственные способности этих животных? Как раз в середине 1960-х широкую известность получили предположения о необычайно высоком (по утверждению некоторых энтузиастов – сопоставимом с человеческим) интеллекте дельфинов. Образ «разумных дельфинов» с тех пор прочно обосновался в массовом сознании и массовой культуре, но как научная гипотеза эта идея повисла в своеобразной невесомости: наука не могла сказать по этому поводу ничего определенного, ибо не имела средств объективно сравнить интеллект животных разных видов.

Впрочем, отсутствие объективных методов изучения интеллекта было лишь отражением гораздо более глубокой, фундаментальной проблемы: а что, собственно, такое «интеллект»? Как мы помним, и на заре зоопсихологии, и позже, в первой половине прошлого века, интеллект «по умолчанию» отождествляли со способностью к обучению – которую, в свою очередь, оценивали по скорости выработки нового навыка. Однако широкие сравнительные исследования, развернутые в 1930–1950-е годы учеными павловской школы (см. главу 5), показали, что, если условия обучения более-менее адекватны для всех исследованных видов (например, когда животное обучают поворачивать в определенную сторону в Т-образном лабиринте), у представителей всех основных классов позвоночных выработка простого двигательного навыка требует примерно одинакового числа проб. Позже было показано, что примерно такое же количество проб требуется и многим активно двигающимся беспозвоночным, а также… взрослым здоровым людям, если обучать их так же, как животных, – не прибегая ни к каким словесным инструкциям. Что бы мы ни понимали под «интеллектом», вряд ли его показателем может служить параметр, одинаковый для человека и червя!

Назад Дальше