Так что же делать? Выкапывать весь слой и промывать его на поверхности? Трудоемко, технически трудноосуществимо и экономически невыгодно. Нефть будет стоить дороже золота! С помощью микробиологов геологи нашли выход из этого затруднительного положения. В нефтеносный пласт вводят микроорганизмы, которые благодаря своим микроскопическим размерам проникают в мельчайшие поры породы и, интенсивно размножаясь и выделяя углекислый газ или метан, создают в каждой поре и в пласте в целом условия, которые способствуют вытеснению нефти на поверхность. Одновременно бактерии, окисляя углеводороды, вызывают изменения их физико-химических свойств, в частности, необходимое снижение вязкости.
Аналогичный эффект увеличения дебита нефтяных скважин можно получить, закачивая культуру микроорганизмов с питательной средой в те из них, в которых резко снизилось избыточное давление. После введения культуры микроорганизмов скважину консервируют и через некоторое время снова открывают. Интенсивно размножаясь в созданных для них благоприятных условиях, микроорганизмы образуют большое количество углекислого газа, который и создает в скважине избыточное давление, необходимое нефтяникам. После такой обработки прирост добычи нефти колеблется в среднем от 20 до 200 %, и это увеличение может сохраняться от двух до восьми лет. Такие разработки уже осуществлены в промышленном масштабе!
Однако роль микроорганизмов в геологии не ограничивается увеличением отдачи нефтяных месторождений.
Еще В. Вернадский отмечал роль живых организмов в качестве аккумуляторов тех или иных элементов. Уровень наших знаний в этой области настолько возрос, что можно использовать такое их умение в технологических целях.
Нужно только выделить из бесконечного множества микроорганизмов те виды, у которых способность извлекать тот или иной элемент довольно велика. Естественно, что поиски геологов и микробиологов были направлены прежде всего на получение дорогостоящих металлов, таких как золото и серебро. Золото в силу многих причин давно служит для человечества мерилом богатства. Хотя надо заметить, что в целом его на Земле не так уж и мало. По расчетам ученых, в одном кубическом километре морской воды может содержаться золота на сумму от $5 до $25 млн. Лауреат Нобелевской премии Фриц Габер (он получил ее за синтез аммиака промышленным способом) тоже занимался извлечением золота из морской воды путем электролиза. Однако при использовании этой очень дорогостоящей технологии оно оказывается вдвое дороже обычного.
Способность же микроорганизмов извлекать золото, т. е. увеличивать его содержание внутри клеток по сравнению с содержанием во внешней среде не имеет себе равных ни в природе, ни в технике. Таким образом, выращивая микроорганизмы на средах, содержащих золото (на той же морской воде), можно буквально собирать урожай этого металла. Кроме золота, в морской воде есть немало растворимых элементов, пожалуй, не менее ценных, чем золото. Некоторые их них можно получать, используя микроорганизмы. Так, во Франции выдан патент на выделение с их помощью урана из морской воды. Японскими учеными разработана технологическая схема извлечения из нее другого металла — ванадия. Это позволило Японии получать этот металл в промышленных масштабах и отказаться от его импорта.
И все же, несмотря на огромное количество металлов, растворенных в воде морей и океанов, в ней их концентрация значительно меньше, чем в самых бедных рудах. Экономически более оправданно было бы использовать именно их, но как перевести металлы в растворимое состояние? И здесь на помощь приходят микроорганизмы.
Среди них есть группа литотрофных бактерий, которые получают энергию для своей жизнедеятельности, окисляя различные неорганические соединения. Они в буквальном смысле «питаются камнем» (литос — камень, трофос — питание); точнее говоря, литотрофные бактерии способны использовать самые разнообразные минералы для своей жизнедеятельности. Именно на использовании этих микроорганизмов основан биотехнологический метод получения металлов из руд.
Он основан на том, что бактерии окисляют сульфидные минералы и переводят содержащиеся в них металлы в растворимую форму. (Мы уже описывали в главе 1 «Как украли железную дорогу» участие микроорганизмов в окислительно-восстановительных превращениях железа.)
При окислении сульфидных минералов большинство элементов из нерастворимой сульфидной формы переходят в растворимую сульфатную. В этом, собственно говоря, и состоит выщелачивание металлов из руд. Его скорость зависит от многих факторов, но именно бактерии, адсорбируясь на поверхности окисляемого субстрата, ускоряют этот процесс в сотни и тысячи раз. Дальнейшее извлечение металлов из растворов также может быть проведено, как уже указывалось выше, с помощью адсорбции микроорганизмами.
Перспективность биотехнологических методов получения металлов очевидна. Полупромышленные и промышленные способы уже внедрены во многих странах. В США в настоящее время примерно 10–15 % меди получают биотехнологическими методами; важное место они занимают и при добыче урана. Бактериально-химическое выщелачивание золота и серебра из кристаллов пирита и арсенопирита позволяет получать на 45 % больше золота и на 128 % — серебра по сравнению с обычными методами извлечения.
К сожалению, в состав некоторых минералов входят элементы, даже незначительные количества которых обладают бактерицидным действием. Это сужает возможность использования микроорганизмов.
Но микробиологи в содружестве с генными инженерами нашли пути решения этой проблемы. Можно выделить и ввести в нужные нам хемолитотрофные микроорганизмы ген, ответственный за биосинтез факторов устойчивости, скажем, к мышьяку. Это позволяет создавать микроорганизмы, невосприимчивые к высоким концентрациям ядовитых веществ или элементов, присутствующих в минералах, и дает возможность использовать полиметаллические руды, содержащие в том числе и биоцидные компоненты.
Поиски новых технологических подходов в геологии вызваны истощением богатых месторождений и необходимостью разработки более бедных залежей полезных ископаемых, которые еще недавно считались неперспективными.
Существенными преимуществами использования микробиологических методов в геологии являются комплексность извлечения металлов, низкая энергоемкость описанных процессов и их экологическая чистота.
Глава 25
Микробиология и космос
Человечество не останется на Земле, но в погоне за светом и пространством… завоюет все околосолнечное пространство.
К. Э. ЦиолковскийИсследование и освоение космического пространства связано с развитием новых научных направлений, к числу которых относится и космическая микробиология.
Изучение жизнедеятельности микроорганизмов после пребывания в космосе, возможность заноса земных бактерий на другие планеты, проникновение инопланетных микробов на Землю, методы обнаружения инопланетной жизни и, наконец, создание замкнутых экологических систем с помощью микроорганизмов — вот далеко не полный перечень задач, стоящих перед космической микробиологией.
Сейчас, когда уже никого не удивишь длительным пребыванием в космосе, стоит напомнить, что микроорганизмы стали самыми первыми биологическими объектами, на которых было проверено физиологическое действие экстремальных факторов, таких как невесомость и космическое излучение.
На первых искусственных спутниках находилась культура микроорганизмов, очень чувствительных к действию радиации. Ее использовали в качестве биологического дозиметра для измерения генетической эффективности космической радиации. Сравнивая клетки, побывавшие в космосе, с контрольными, которые оставались во время опыта на Земле, удалось установить границы поясов повышенной радиации и выбрать такие орбиты для космических кораблей с человеком на борту, на которых уровень радиации минимальный.
Выживаемость микроорганизмов в экстремальных условиях космоса поразительна. Для иллюстрации можно привести следующий факт. Когда экипажем «Аполлона-12» с Луны была доставлена кинокамера, заброшенная туда за три года до этого автоматической станцией Surveyor-3, то внутри нее обнаружили бактерии Streptococcus mitus. Помещенные в питательную среду, они ожили на четвертый день, а еще через день начали делиться. Им не повредили далекое космическое путешествие и трехгодичное пребывание на Луне. Предполагают, что микроорганизмы были внесены внутрь кинокамеры до полета, во время ремонта, а затем лиофизированы, т. е. высушены холодным вакуумом во время предполетной обработки. Исследование влияния вакуума на жизнедеятельность некоторых микроорганизмов показало, что глубокий вакуум не оказывает губительного действия на целый ряд микроорганизмов. Более того, при его комплексном воздействии, а также низких температурах некоторые виды микробов лучше сохраняются в нем, чем при нормальном атмосферном давлении. Это говорит о том, что в глубоком вакууме при низких температурах существуют вполне благоприятные условия для анабиоза, что свидетельствует о возможности доставки на другие планеты жизнеспособных представителей земной жизни. Экспериментально это предположение было подтверждено американским ученым Р. Сильверманом, доказавшим жизнеспособность земных микроорганизмов, слетавших на Луну и обратно.
Выходя за пределы Земли в экологической нише космического корабля, человек может распространить по Вселенной и входящие в ее состав микроорганизмы. Однако возникает серьезная проблема их неконтролируемого распространения, поэтому вопрос о существовании жизни на этих планетах до появления на них человека уже невозможно будет решить. Поэтому, чтобы сохранить инопланетную жизнь в ее первозданном состоянии, необходимо тщательно стерилизовать космические корабли.
О том, насколько большое значение придается этой проблеме, свидетельствует резолюция Международного комитета по космическим исследованиям (КОСПАР)[8] о необходимости стерилизации космических аппаратов с допустимым пределом зараженности 1×10-3. Эта величина означает наличие одной микробной клетки на 1000 космических аппаратов!
Однако космическая карантинная служба необходима не только для решения вопроса «Есть ли жизнь на Марсе?». Проникновение инопланетных микробов (если, конечно, они там есть!) в экологическую нишу Земли, обычно защищенную от вторжения микроорганизмов экраном атмосферы и магнитных полей, может привести к тяжелым последствиям для всего человечества. Отсутствие иммунитета к инопланетным микроорганизмам может послужить причиной массовых тяжелых заболеваний. (Трагический пример такой ситуации — смертельные случаи, наблюдавшиеся при заболевании корью у населения островов Тихого океана, которое никогда до прихода европейцев не сталкивалось с этой болезнью.) Кроме того, «чужие» микроорганизмы, даже не будучи болезнетворными, могут стать конкурентами человека и других организмов за какие-либо жизненно важные элементы, например за кислород, сыграв при этом роль злодея из повести А. Беляева «Продавец воздуха»[9] настолько хорошо, что человечество должно будет приложить немало усилий, чтобы справиться с этим нашествием.
Вот почему космические корабли проходят строжайший микробиологический контроль перед выходом в космос и еще более строгую проверку — при возвращении на Землю.
Есть еще один важный аспект, связанный с необходимостью стерилизации космических кораблей. Известно следствие шуточного закона Чизхолма: «Все, что не может испортиться, — портится тоже». Казалось, что ракетное топливо, которое используется для вывода на орбиту космических кораблей и корректировки их движения в межпланетном пространстве, не должно попасть в сферу действия этого закона. Но такое предположение не оправдалось. Ракетное топливо тоже портится, и причиной этого могут быть микроорганизмы. Если подвергнуть его микробной атаке, то у него изменяются свойства, что может привести к непредвиденным ошибкам в траектории полета. Законсервировать ракетное топливо, спасти его от разрушительного действия микроорганизмов — одна из серьезнейших задач, стоящих перед ракетостроителями и микробиологами. От ее выполнения зависят и ювелирная точность посадки космических аппаратов на другие планеты, и возможность корректировки орбит околоземных орбитальных станций, и решение много других вопросов, казалось бы, никак не связанных с микробиологией.
Однако вернемся к вопросу о наличии микроорганизмов на Луне и других планетах Солнечной системы. Возможность существования на них жизни издавна интересовала человечество, и именно микроорганизмы с их изумительной приспособленностью к экстремальным условиям и способностью использовать в качестве источника энергии широкий спектр субстратов являются лакмусовой бумажкой для определения наличия жизни. Последние успехи космонавтики впервые позволили провести прямые исследования этого вопроса. Американские ученые Г. Тейлор, Е. Фергюссон и К. Траби провели анализ лунного вещества, доставленного на Землю в условиях полной асептики. При этом авторы исследовали не только грунт с поверхности, но и образцы из нижележащих слоев. Эксперименты проводили в специально оборудованном боксе, высевая тонкоизмельченные образцы грунта на различные среды. После инкубации в течение 21 дня ни на одной из испытанных сред не был обнаружен рост микроорганизмов. Однако полученные результаты отнюдь не дают однозначного ответа на поставленный вопрос. Связано ли отсутствие развития микроорганизмов с отсутствием микрофлоры в образцах лунного грунта, или полученные результаты свидетельствуют о подавлении роста микроорганизмов химическими веществами, содержащимися в испытуемых образцах, или, наконец, только подтверждают неспособность «лунных» бактерий расти на испытанных питательных средах? Ответы на эти вопросы могут быть получены после проведения дополнительных исследований.
Предварительные результаты изучения Марса с помощью автоматических станций тоже не позволяют сделать однозначный вывод о наличии или отсутствии микрофлоры на этой планете.
Человечество уже сделало первые шаги за пределы Земли. Главная особенность предстоящих космических путешествий — это их длительность. Представьте себе, что вы собираетесь в долгое космическое путешествие, пусть даже в пределах Солнечной системы. Тогда вам необходимо подумать об обеспечении экипажа не только оборудованием и скафандрами, но и воздухом, водой и пищей на весь период путешествия. Кстати сказать, полет, например, на Марс и обратно продлится около двух лет. Самый скромный запас необходимых для этого продуктов, даже если экипаж состоит всего из нескольких человек, никакой корабль не вместит, не говоря о трудностях вывода такого груза на околоземную орбиту. Выход из этого один: нужно многократно использовать продукты питания, превращая отходы вновь в продукты питания и регенерируя воздух в кабине корабля, т. е. в миниатюре воспроизводя кругооборот веществ, который существует на Земле. На нашей планете он осуществляется в течение длительного периода. Экологическая емкость Земли достаточно велика, и если в одном из звеньев не происходит полного возвращения веществ обратно в цикл, то это компенсируется их интенсивным возвратом в другом звене. В условиях космического полета, когда цикл замыкается не на всю Землю, а только на систему регенерации космического корабля, емкость которой невелика, проблема многократно усложняется. Решение этой задачи может быть обеспечено лишь за счет высокой интенсивности работы систем регенерации. Известные системы химического типа или основанные на «работе» растений по интенсивности не могут сравниться с регенерирующими системами на основе микроорганизмов.
И действительно, только с помощью микроорганизмов, поскольку они обладают высокой интенсивностью обмена, можно создать замкнутую экологическую нишу, которую и представляет собой космический корабль, способный к длительным путешествиям в космосе.
Глава 26
Микробы вытесняют бензин
…Я считаю, что подлинный переворот в энергетике произойдет только тогда, когда мы сможем осуществлять массовый синтез молекул, аналогичных хлорофиллу, или даже более высокого качества.
Ф. Жолио-КюриЧеловеку нужна энергия для всего, чем он занимается, вплоть до самого факта его существования. Повышение жизненного уровня, дальнейшее развитие промышленности и сельского хозяйства требуют все больше и больше энергии. Только за последние 100 лет мощности установок по ее получению возросли в 1000 раз. Остается надеяться, что в дальнейшем энергетические потребности человечества будут возрастать не так стремительно. Предварительный прогноз на ближайшие 20 лет предполагает двукратное увеличение потребности в энергии. Между тем расчеты показывают, что уже в ближайшие годы традиционных энергоресурсов, таких как уголь, нефть и газ, окажется недостаточно для удовлетворения растущих потребностей человечества. Так возникла еще одна проблема нашего времени — энергетическая.
Возьмем для примера автомобильный транспорт. Используемая им энергия составляет около половины всего ее количества, потребляемого в настоящее время человечеством.
Подумайте только: во всем мире сейчас существует 800 млн автомобилей, и по расчетам, к 2035 г. их число увеличится до 3 млрд! И вся эта прорва двигателей внутреннего сгорания поглощает массу энергии. Причем поглощает нерационально. Но дело не только в этом. Автомобильный транспорт использует продукты крекинга нефти — бензин, керосин, дизельное топливо — уникальные вещества, которые, конечно, выгоднее использовать не в качестве горючего. Еще Д. И. Менделеев говорил, что жечь каменный уголь или нефть — то же самое, что топить ассигнациями. Помимо этого, сжигание бензина и других видов топлива в двигателях внутреннего сгорания приводит к серьезному загрязнению воздуха выхлопными газами. Но несмотря на это запретить использование автотранспорта не под силу никакому правительству, и нехватка топлива, по выражению одного из комментаторов, — это нехватка навсегда. Нужны новые виды горючего, новые источники энергии.