Одним из самых ярких проявлений каталитического свойства железа является процесс синтеза порфиринов. Здесь этот металл, как предполагают, является аутоката-лизатором, то есть вещёством, катализирующим встраивание самое себя в порфириновый комплекс. И вообще на примере железопорфиринов прекрасно прослеживается логика природы при эволюционном отборе биохимически активных вещёств.
Аутокатализ — это, в сущности, химическое название самовоспроизводящегося процесса, то есть свойства, которое, судя по всему, следует считать одним из критериев живого.
Давайте снова посмотрим на порфнрин. Ион металла в нем попадает в крепкие объятия четырёх атомов азота — элемента, который является непременным для биологических катализаторов. Вот как, например, происходит нарастание каталитических свойств трёхвалентного железа. (Вспомним Тенара, который использовал железо для ускорения разложения перекиси водорода.) Если ион этого металла встроить в порфириновый комплекс, то его эффективность возрастает в 1000 раз. Если же такой железосодержащий порфирин включить в белковую молекулу, скажем фермента каталазы, то скорость каталитического разложения перекиси водорода возрастёт ещё в 10 млн. раз. Предполагается, что именно таким путём постепенного усложнения в процессе эволюции природа и ввела железо в состав биокатализаторов.
Но почему именно в этом решающее значение сыграли порфирины? Потому, что эти вещёства могли легко возникнуть в первичной атмосфере нашей планеты. Здесь нам придётся уклониться от основной темы нашего рассказа.
Небольшое отступление об атмосфере
Итак, атмосфера. Автор полагает, что вполне правомерно делает отступление, ибо в конце концов гемоглобин является переносчиком кислорода, который наш организм получает именно из атмосферы.
Дело в том, что привычный нам воздух не всегда был таким, каким мы вдыхаем его сейчас. Напомним: сегодня он состоит из 21 % кислорода, 78 % азота, остальное -инертные газы и углекислый газ. Но воздух сегодня составляет вторичную атмосферу, сформировавшуюся тогда, когда появилась жизнь. Ранее, считают учёные, состав атмосферы был иной: в ней преобладали аммиак, водород, вода, углекислый газ и мётан. Чистый кислород практически отсутствовал. Иными словами, это была смесь газов, которые выходили из земных недр. Кстати, и в наше время эти газы выделяются при извержении вулканов.
Представим себе безжизненную Землю с однообразным пейзажем, с горячей атмосферой и вечным мраком, потому что небо всегда было закрыто плотными облаками. Несколько разнообразили этот мрачный пейзаж сверкание молнии и извержения вулканов. Такую адскую картину, вероятно, можно застать на нашей ближайшей космической соседке — Венере, атмосфера которой большей частью состоит из углекислого газа и разогрета до 500 °. Вероятно, при таких условиях и происходило образование органических вещёств на первобытной Земле, в том числе и порфиринов. Блестящие доказательства этому представили американские учёные Г. Ходгзон и К. Поннамперума. Лет 15 назад они поставили довольно простой эксперимент: смешали аммиак, мётан, воду и водород и пропустили через них электрический разряд. Таким образом имитировались условия первичной атмосферы. В результате исследователи синтезировали порфирин. Для получения больших количеств, или, как говорят специалисты, для увеличения выхода порфирина, применяли в качестве катализатора различные металлы. Оказалось, что наилучшие результата достигаются при добавке железа.
То, что железо заняло место в окошке порфирина,— не случайность. Ионы других, даже наиболее распространённых металлов земной коры не обладают необходимыми свойствами, чтобы претендовать на вакансию. Так, например, соединения алюминия и титана нерастворимы в воде, что затрудняет образование их комплексов с порфиринами.
А натрий, калий и кальций хотя и образуют такие комплексы, но они неустойчивы и быстро разлагаются в воде.
Итак, сначала свободный кислород в атмосфере отсутствовал (или присутствовал в крайне незначительных количествах), и первые обитатели нашей планеты обходились без него. Несколько позднее появились синезелёные водоросли, или, как их ещё называют, цианобактерии, весьма распространённые и сегодня. Эти микроорганизмы, как и зелёные растения, существуют благодаря фотосинтезу. Иными словами, поглощая углекислый газ, воду и солнечную энергию, они поддерживают свою жизнедеятельность, побочным продуктом которой является кислород.
Так вот, эти самые синезелёные съели всю углекислоту первичной атмосферы, но зато насытили её кислородом. Затем произошло следующее. Кислород как активный элемент вступил в реакцию с аммиаком и перевёл его в весьма инертный азот. Вот так за долгое время эволюции и возникла наша азотно-кислородная атмосфера, которая пришлась по вкусу всем тем, кто появился после синезеленых водорослей, в том числе и нам с вами.
Как ни стараются учёные, за пределами нашей планеты пока жизнь не обнаружена. Потому особенно любопытно было бы, как считает ряд специалистов, запустить на Венеру синезеленых пожирателей, чтобы они и там уничтожили всю углекислотную атмосферу и превратили её в подобие нашей.
Снова возникает вопрос: зачем высшим формам жизни понадобился именно кислород? Среди первых существ были не только синезелёные водоросли, но и другие анаэробы — организмы, обходящиеся без кислорода. Свою жизнь они поддерживали (а те, что продержались до наших дней, поддерживают и сегодня) не путём окисления, как мы, а восстановлением, отнимая от своей пищи водород. Типичный процесс такого рода — брожение.
Если затронуть опять же энергетическую сторону вопроса, то получается вот что. При окислении одного моля глюкозы — основного топлива организма выделяется 686 килокалорий тепла, а при сбраживании — всего лишь 50. Таким образом, кпд живого организма повысился круглым счётом в 14 раз!
Имело,значит,смысл бороться за кислород, изобретать хитроумную систему его доставки к месту окисления, всю эту кровь, эритроциты, гемоглобин. ..Так и возникла кислородная круговерть биосферы, закрутилась карусель жизни...
И снова гемоглобин и Шерлок Холмс
Мы говорим: кислород — окислитель. Но союз кислорода и двухвалентного железа в гемоглобине просто невероятное исключение. Здесь никакого окисления не происходит, так как железо сохраняет свою валентность. Недаром английский физиолог, один из основоположников науки о дыхании, Дж. Баркрофт назвал гемоглобин «самым удивительным веществом в мире». Напрашивается такая аналогия: ион двухвалентного железа гемоглобина «берет за руку» молекулу кислорода и «ведёт» её к месту свершения действительного окисления, где и «отпускает».
Но гемоглобин не был бы самым удивительным веществом, если бы не выполнял и другую функцию — выведение углекислого газа с места окисления. И если кислород вводится в клетку гемом, то углекислоту оттуда транспортирует глобин. Таким образом, эритроцит, набитый 280 млн. молекул гемоглобина, представляет собой нечто вроде автобуса, у которого не бывает холостых пробегов. Вот так рационально устроено все в хозяйстве природы. Впрочем, все ли?
«Угарный газ!» — вскричал он... Заглянув в дверь, мы увидели, что комнату освещает только тусклое синее пламя, мерцающее в маленькой медной жаровне посередине. Оно отбрасывало на пол круг неестественного, мертвенного света, а в тёмной глубине мы различили две смутные тени, скорчившиеся у стены. В раскрытую дверь тянуло странным ядовитым чадом, от которого мы задыхались и кашляли. Холмс взбежал по лестнице на самый верх, чтобы вдохнуть свежего воздуха, и затем, ринувшись в комнату, распахнул окно и вышвырнул горящую жаровню в сад».
Да, как вы догадались, это опять Конан Дойл. Всем известно, что угарный газ, точнее окись углерода, чрезвычайно ядовит и поэтому часто является причиной случайных и преднамеренных отравлений. Это его свойство и использовано знаменитым автором детективных историй в одном из рассказов.
Так вот, окись углерода как раз и является примером того, что не все ладится в хозяйстве природы. Этот газ не имеет ни цвета, ни вкуса, ни запаха и, несмотря на свою сильную ядовитость, не оказывает никакого раздражающего действия на организм. Поэтому его присутствие может быть совершенно незаметно. Поступая через лёгкие в кровь, окись углерода в 300 раз быстрее, чем кислород, соединяется с гемоглобином, блокируя, таким образом, его доставку организму. «Обманутый» гем вместо двух атомов молекулярного кислорода тащит за собой молекулу окиси углерода. Жизненно необходимые углерод и кислород, объединённые в молекулу угарного газа, образуют зловещее вещество. Чем больше концентрация угарного газа, тем больше его попадает в организм, тем быстрее наступает отравление. Поэтому всегда следует помнить, что рядом с нами находится коварный невидимка, который уже при содержании в воздухе в один процент делает своё чёрное дело.
В прошлом, в том числе и недалёком, люди чаще всего угорали, когда топили печи. Конечно, в наш благословенный век центрального отопления с печами в быту приходится иметь дело редко. Однако случаев отравления окисью углерода не становится меньше, ибо она содержится и в выхлопах двигателей внутреннего сгорания, и в горючих газах, нашедших самое широкое применение. Даже в небе подчас нет спасения от этого врага. Криминалисты полагают, что некоторые авиационные катастрофы происходят из-за повышения концентрации окиси углерода, возникающего при износе двигателей или плохой их регулировке. Проникая в кабину, угарный газ может явиться причиной отравлений экипажа. Современные воздушные лайнеры оборудованы герметичными кабинами, имеющими системы наддува и вентиляции, что значительно снижает вероятность вредного воздействия выхлопных газов двигателя.
Спасительное средство при отравлении угарным газом — свежий воздух. Этим и были продиктованы уверенные действия Холмса — ведь Конан Дойл был врачом... Свежий воздух! Когда он наполняет наши лёгкие, кровь становится алой. Это оксигемоглобин разносит по артериям кислород. Отработанная — венозная —. кровь имеет характерный вишнёво-красный цвет: она насыщена углекислотой, которую транспортирует карбогемоглобин. Гемоглобин, связанный с окисью углерода, получил название карбоксигемоглобин. Во всех этих видах гемоглобин обладает свойством обратимого соединения с кислородом, углекислым газом и окисью углерода.
Хуже обстоит дело, когда под влиянием ядовитых веществ, таких, например, как анилин или нитраты, железо в теме из двухвалентного переходит в трёхвалентное. Образуется метгемоглобин, не способный переносить кислород.
И все же не будем сетовать на природу — описанные явления представляют редкое исключение. По сути же, все в ней устроено наисовершеннейшим образом. Образец такого устройства — математически точная связь гемоглобина и кислорода, которая обеспечивает дыхание.
Арифметика крови
Всякий, кому приходилось сдавать кровь на анализ, получив результат, прежде всего интересуется содержанием гемоглобина. О чем говорят цифры? Кровь здорового человека содержит от 13 до 16 % гемоглобина, причём за 100 % принято его содержание в 100 мл, равное 16,7 г. Но так как в нормальной крови 100 % гемоглобина не бывает, то, скажем, 80 %, правильнее — единиц, означает содержание в 13,4 г.
Молекулярная масса гемоглобина примерно 66 500. На долю гема в этой молекуле приходится 3,15 %, а на долю железа — 0,35 %. В молекуле гемоглобина содержится всего четыре атома железа, но они умеют многое. Вот что установлено. При вдохе 1 мл крови соприкасается с 1,48 см воздуха. Оказывается, число молекул кислорода, содержащееся в этом объёме, соответствует числу атомов железа во всех эритроцитах, находящихся в 1 мл крови. Иными словами, 1 г гемоглобина связывает 1,34 см3 кислорода.
Эти цифры показывают, как чётко и слаженно должен работать наш организм, чтобы строго в единицу времени направлять в кровь из запасников определённое количество эритроцитов, чтобы вырабатывать в костном мозге нужное количество гемоглобина, чтобы сердце подавало точно отмеренный расход крови, чтобы лёгкие ритмично делали вдох и выдох.
И все же многое ещё неясно в механизме доставки кислорода гемоглобином. Этот процесс, как представляется сегодня, не может быть связан только простыми количественными соотношениями. Возможно, в крови происходят ещё какие-то, пока невыясненные каталитические процессы.
Не весь кислород, доставляемый гемоглобином, сразу же идёт в дело. Часть его остаётся в мышцах и вот для чего. Когда из-за сокращения мышц многие кровеносные сосуды оказываются сдавленными, доставка кислорода обычным путём крайне затруднена. Поэтому и приходится держать наготове запас кислорода.
Эстафету гемоглобина в мышцах принимает другой гемосодержащий белок — миоглобин. Это «младший брат» гемоглобина. Окраска миоглобина также зависит от содержания в нем железа.
Вот почему мясо красное. Традиционное же мнение — потому, что оно пропитано кровью,— не верно. Кровь тут совершенно ни при чем.
А заблуждение насчёт того, что красный цвет мышцам, а значит и мясу, придаёт кровь, бытует давно. Об этом ещё в 1726 году упоминает известный швейцарский естество испытатель, академик Петербургской академии наук Д. Бернулли в своём труде «О движении мышц». Только в 1883 году появилось исследование русского учёного К- С. Мережковского, в котором высказывался совершенно новый для того времени взгляд на функцию так называемо го мышечного гемоглобина в организме. В дальнейшем было установлено различие между гемоглобином крови и гемоглобином мышц — его-то в 1921 году и назвали многлобином.
Гемоглобин под рентгеном
Окончательная разгадка строения молекул гемоглобина и миоглобина связана с именами известных учёных Макса Перутца и Джона Кендрю, начинавших свою деятельность в знаменитой Кавендишской лаборатории Кэмбриджского. университета в Англии. Именно там был разработан, рентгеноструктурный анализ, сыгравший исключительную роль не только в исследовании кристаллов белков, но также самой, пожалуй, знаменитой молекулы дезоксирибонуклеиновой кислоты (ДНК). Однако это произойдёт позже, в 50-е годы. А пока, во второй половине 30-х годов, М. Перутц, австриец по происхождению, стажируется в Кавендишской лаборатории. Его привлекал рентгеноструктурный анализ. А так как он интересовался ещё и биохимией, то обратил внимание на гемоглобин и химотрипсиы, дававшие хорошие кристаллы.
Вскоре выяснилось, что химотрипсин чрезвычайно труден для исследования, и Перутц сосредоточился только, на гемоглобине. Но и гемоглобин оказался не менее крепким орешком. Понадобилось чуть ли не 30 лет (!), прежде чем удалось установить его строение. Разумеется, Перутц на такой срок работы не рассчитывал. Однако он отдавал себе отчёт, что берётся за весьма нелёгкую задачу. Много позднее он по этому поводу не без иронии говорил: «...Когда темой своей диссертации я выбрал рентгено-структурный анализ гемоглобина, мои товарищи не могли смотреть на меня без сожаления. В ту пору самым сложным органическим вещёством, структура которого была установлена с помощью рентгеноструктурного анализа, оставалась молекула красителя фталоцианина, состоящая из 58 атомов. Как мог я надеяться выяснить расположение тысяч атомов в молекуле гемоглобина?»
В 1946 году к Перутцу присоединился армейский офицер королевских ВВС Дж. Кендрю, который после демобилизации решил посвятить себя молекулярной биологии. До войны здесь же в Кембридже, в Тринити-колледже, он блестяще окончил курс естественных наук, получив степень бакалавра, а затем и магистра (примерно соответствующую нашей кандидатской).
К приходу Кендрю результаты десятилетних усилий Перутца в исследовании гемоглобина были весьма скромными. Поэтому Кендрю выбрал себе более простой объект для экспериментов — миоглобин кашалота. Этот белок в больших количествах был найден в мышцах китов и тюленей, что и объясняет их способность долго находиться под водой. Мы уже знаем о том, что молекулы кислорода переходят от гемоглобина к миоглобину, где и хранятся надёжно, пока не потребуются клетке.
Долгие годы неудач не сломили Перутца. Он не отступил. Стало ясно, что нужно менять тактику исследований. Обычные методы рентгеноструктурной дифракции оказались недостаточными для расшифровки чрезвычайно сложной молекулы гемоглобина.
В то время руководителем Кавендишской лаборатории был У. Л. Брэгг, нобелевский лауреат, один из основателей рентгеноструктурного анализа. Естественно, что он был живо заинтересован в установлении структур белковых молекул — сложнейших в природе. Он постоянно наблюдал за ходом экспериментов и частенько захаживал в лабораторию Перутца, чтобы взглянуть на свежие рентгенограммы: Потом сэр Брэгг отправлялся домой и на досуге долго размышлял над полученными результатами.
Изготовление рентгенограммы кристалла () — лишь половина дела. Далее пятна на снимке, соответствующие определённым структурным центрам, с помощью специального оптического прибора преобразуют в ряд дифракционных полос. Затем их совмещают, и только тогда получают нечто вроде контурных карт, по которым определяют строение вещёства.
Чтобы добиться изображения, отражающего реальную структуру, нужно правильно расположить набор дифракционных полос по отношению к определённой, но произвольно выбранной исходной точке. Получая такой набор, довольно легко определить амплитуду волны. Но не её фазу! Здесь-то «зарыта собака» всей многолетней проблемы: изображений могло получиться бесчисленное множество— в соответствии с выбранной фазой для каждого ряда полос. Попробуй, угадай, какое из них правильное.
Вот как сам Перутц писал про это: «Сама по себе рентгенограмма говорит нам только об амплитудах, но ничего не говорит о фазах полос, которые даёт каждая пара пятен; таким образом, половина информации, необходимой для получения изображения, отсутствует. Из-за этого рентгенограмма кристалла оказывается иероглифом без ключа для его расшифровки. Терпеливо измеряя в течение ряда лет интенсивность нескольких тысяч пятен на рентгенограммах гемоглобина, я испытывал танталовы муки, которые может понять только исследователь, заполучивший коллекцию табличек с надписями на неизвестном языке. ...Мы с Брэггом пытались разработать методы расшифровки фаз, но не добились большого успеха».