Для гармонического ряда, модифицированного при помощи монетки, распределение вероятности выглядит так, как показано на рисунке. Эта функция немного напоминает знакомую колоколовидную кривую, или нормальное распределение, но ее верхняя часть приплюснута. Это симметричная кривая, где замена левой стороны на правую соответствует замене орла на решку при бросании симметричной монетки.
Эта задача – предметный урок «экспериментальной математики», в которой компьютерные расчеты используются для выдвижения интересных гипотез. Похоже, что центральный пик достигает высоты 0,25, то есть 1/4. Кроме того, значения функции при –2 и +2 равны 0,125, то есть 1/8. В 1995 г. Кент Моррисон предположил, что обе эти гипотезы верны, но в 1998 г. он изменил свое мнение и исследовал их подробнее. С точностью до десяти знаков после запятой плотность вероятности при x = 0 составляет 0,2499150393, то есть чуть меньше 1/4. Однако с той же точностью при x = 2 значение функции равно 0,1250000000, что по-прежнему очень похоже на 1/8. Но если провести расчет до 45 знаков после запятой, значение получится следующее:
0,124999999999999999999999999999999999999999764,
что отличается от 1/8 менее чем на 10−42.
В статье Шмуланда[22] объясняется, почему эта вероятность так близка, но не равна в точности 1/8. Таким образом, очень правдоподобная гипотеза, выдвинутая на основе экспериментальных данных, оказывается ошибочной. Вот почему математики всегда настаивают на доказательствах, в точности так, как на них всегда настаивает Хемлок Сомс.
Собаки, дерущиеся в парке
Из мемуаров доктора Ватсапа
Во время обычной утренней прогулки в Равностороннем парке, что возле Мэрилбоун-роуд рядом с пабом «Пес и треугольник», я стал свидетелем любопытного инцидента и по прибытии на Бейкер-стрит, 222b не удержался от того, чтобы поделиться своими впечатлениями с коллегой.
– Сомс, я только что наблюдал любопытный…
– Инцидент. Вы видели в парке трех собак, – отозвался он, не моргнув глазом.
– Но как… конечно! На моих брюках грязь, и форма пятен и брызг указывает…
Сомс хмыкнул.
– Нет, Ватсап, мои дедуктивные выводы имеют другую основу. Они говорят мне не только, что вы видели трех собак в парке, но что эти собаки дрались.
– Так и есть! Но любопытный инцидент состоял не в этом. Наоборот, было бы любопытно, если бы собаки не стали драться.
– И правда. Нужно запомнить это замечание, Ватсап. Очень удачно сказано.
– Любопытно то, что предшествовало драке. Собаки появились одновременно в трех углах парка…
– Который представляет собой равносторонний треугольник со сторонами по 60 ярдов, – вставил Сомс.
– Ну да. И стоило собакам появиться, как каждая из них увидела противника – того, что находился от нее по часовой стрелке, – и без малейшего промедления рванула к нему.
– Все бежали с одинаковой скоростью 4 ярда в секунду.
– Склоняюсь перед вашей проницательностью. В результате все три собаки пробежали по одинаковым кривым дорожкам и одновременно столкнулись в центре парка. Никто и глазом моргнуть не успел, а они уже дрались, и мне пришлось их разнимать.
– Отсюда прорехи в вашем пальто и на брюках, а также следы зубов у вас на ноге. Я вижу, что они нанесены ирландским сеттером, ретривером и метисом бульдога с ирландским волкодавом. Хромым на переднюю левую лапу.
– Ах!
– В красном кожаном ошейнике. С колокольчиком. Который заржавел и больше не звонит. Хватило ли у вас наблюдательности, чтобы заметить, сколько времени ушло у собак на бег к точке встречи?
– Я забыл вынуть свои карманные часы, Сомс.
– Да ладно, Ватсап! Вы смотрите, но не видите. Однако в данном случае это время можно вычислить по уже установленным данным.
Считайте собак точечными объектами. Ответ см. в главе «Загадки разгаданные».
Какой высоты это дерево?
У лесничих есть один старый прием, позволяющий оценить высоту дерева, не влезая на него и не пользуясь геодезическими инструментами. Этот прием может послужить прекрасным средством взломать лед и оживить атмосферу на пикнике, если где-нибудь поблизости найдется подходящее дерево. Я познакомился с этим трюком в статье Тоби Бакленда[23]. Проделывать этот фокус рекомендуется в брюках.
Встаньте на некотором расстоянии от дерева спиной к нему. Наклонитесь и взгляните на дерево между своими ногами. Если вы не видите его вершины, отойдите подальше и повторяйте процедуру до тех пор, пока не увидите. Если вы легко видите ее, подойдите поближе на такое расстояние, чтобы вершина была едва видима. В этой точке расстояние от вас до основания дерева будет приблизительно равно его высоте.
Эта методика, если ее можно так назвать, представляет собой простое приложение евклидовой геометрии. Она основана на том, что большинство людей может посмотреть между ногами назад и вверх под углом примерно 45°. Поэтому линия взгляда на вершину дерева оказывается гипотенузой равнобедренного прямоугольного треугольника, две другие стороны которого равны.
Очевидно, точность этого метода напрямую зависит от гибкости вашего тела, но для многих из нас он дает не слишком большую ошибку. Бакленд замечает: «Попробуйте, это дешевле, чем занятия йогой, и открывает нам взгляд на мир с такого ракурса, с какого большинство из нас не видело его с детства!»
Почему у моих друзей больше друзей, чем у меня?
Бог ты мой! Кажется, у всех вокруг больше друзей, чем у меня!
Такое можно встретить и в «Фейсбуке», и в «Твиттере». Такое можно встретить на сайте любой социальной сети, но такое происходит и в реальной жизни. Это случается, если вы вдруг решаете произвести подсчет деловых или сексуальных партнеров. Начиная перебирать своих друзей, чтобы посмотреть, сколько друзей у них, получаешь весьма поучительный опыт. Мало того, что у большинства из них друзей оказывается больше, чем у вас; в среднем у всех без исключения оказывается больше друзей.
Почему же вы так непопулярны в сравнении со всеми остальными? Это внушает серьезную тревогу. Но расстраиваться нет никаких причин. Друзья большинства людей имеют больше друзей, чем сами эти люди.
Вероятно, это звучит по меньшей мере странно. Каждый в данной социальной сети имеет в среднем одно и то же число друзей; говоря конкретно, среднее существует только одно. У кого-то друзей больше, у кого-то меньше, но в среднем их… среднее количество. В этом случае кажется интуитивно правдоподобным, что и друзья этих людей в среднем тоже имеют это же число друзей. Но так ли это?
Рассмотрим пример. Он не придуман специально так, чтобы создать нестандартную ситуацию; это первое, что пришло мне в голову. Большинство сетей ведет себя точно так же. В сети (см. выше) представлено 12 человек, линии соединяют друзей. (Считаем, что все дружбы взаимны. В социальных сетях это не всегда так, но эффект, о котором идет речь, все равно возникает.) Представим несколько ключевых показателей в табличной форме.
Жирным шрифтом я выделил в последнем столбце числа, которые оказались больше, чем число во втором столбце. Это те случаи, в которых друзья X имеют в среднем больше друзей, чем сам X. Выделены 8 из 12 чисел в этом столбце, и еще в одном случае числа там и там одинаковы.
Если усреднить числа во втором столбце, получится 3. Это означает, что среднее число друзей у человека по всей социальной сети равно 3. Но большинство записей в четвертом столбце больше этого среднего значения. Что в данном случае не так с интуицией?
Ответ дают такие люди, как Джордж и Жанна, у которых особенно (и необычно) много друзей – в данном случае 5 и 6 соответственно. По этой причине при подсчете друзей у друзей их считают намного чаще, чем остальных. И поэтому они вносят больший вклад в сумму в столбце 3 и, следовательно, в среднее значение. С другой стороны, люди с небольшим числом друзей фигурируют в подсчете гораздо реже и вносят значительно меньший вклад.
Ваши друзья – не типичный пример. Среди них гораздо лучше представлены люди с большим числом друзей, поскольку шанс на то, что вы входите в число их друзей, намного выше. А люди с небольшим числом друзей представлены куда хуже. Именно этот эффект сдвигает среднее число друзей у друзей в сторону увеличения.
В третьем столбце таблицы можно увидеть, как это происходит. Число 5 фигурирует в столбце 3 пять раз – по одному у каждого из друзей Джорджа; точно так же 6 в столбце 3 встречается шесть раз, по одному у каждого из друзей Жанны. С другой стороны, вклад Алисы в столбец 3 (не в ее собственной строке, а в тех случаях, когда она сама фигурирует в других строках как друг) составляет всего лишь две двойки: одна от Боба и одна от Вероники. Таким образом, вклад Джорджа составляет 25, а вклад Жанны – даже 36, тогда как бедняжка Алиса вносит всего лишь 4.
В третьем столбце таблицы можно увидеть, как это происходит. Число 5 фигурирует в столбце 3 пять раз – по одному у каждого из друзей Джорджа; точно так же 6 в столбце 3 встречается шесть раз, по одному у каждого из друзей Жанны. С другой стороны, вклад Алисы в столбец 3 (не в ее собственной строке, а в тех случаях, когда она сама фигурирует в других строках как друг) составляет всего лишь две двойки: одна от Боба и одна от Вероники. Таким образом, вклад Джорджа составляет 25, а вклад Жанны – даже 36, тогда как бедняжка Алиса вносит всего лишь 4.
Кому дано, приумножится.
Во втором столбце ничего подобного не происходит: каждый вносит в среднее значение, равное 3, свою справедливую долю.
На самом деле среднее значение всех чисел в столбце 4 равно 3,78, заметно больше трех. Вероятно, мне следовало бы использовать взвешенное среднее значение: сложить все числа в столбце 3 и разделить на их количество. Тогда получится 3,55, все равно больше трех.
Надеюсь, после моего объяснения вы почувствовали себя лучше.
Доказательство см. в главе «Загадки разгаданные».
Статистика. Разве это не чудесно?
По статистике, каждый год в мире откладывается 42 млн крокодильих яиц. Из них проклевывается только половина. Три четверти проклюнувшихся крокодильчиков съедается хищниками за первый месяц жизни. Из оставшихся только 5 % доживают до возраста одного года – по разным причинам.
Если бы не статистика, нас всех съели бы крокодилы!
Приключение шестерых гостей
Из мемуаров доктора Ватсапа
Меня давно расстраивала откровенная нелюбовь Сомса к обедам с гостями. Он презирает светскую болтовню и чувствует себя неловко в компании женщин, особенно привлекательных женщин, таких как моя приятельница Беатрис. Но время от времени ему приходится стискивать зубы, брать быка за рога, запасаться банальностями и посещать светские мероприятия с присутствием прекрасного пола. На них он может показать себя в разные моменты времени замкнутым, несносным, обаятельным, словоохотливым или всем одновременно в разных сочетаниях.
Событие, о котором пойдет речь, представляло собой скромный tête-à-tête, на котором присутствовали Артур и Беатрис Шипшер (брат и сестра) и Гренвилл и Доринда Лэмбшенк (муж и жена). Разумеется, я был знаком со всей четверкой; Беатрис – милая леди, не замужем, и, я убежден, поклонника у нее в настоящее время тоже нет. Сомс знал только меня, и я опасался, что из-за этого в нем могут возобладать худшие черты характера, но я надеялся расширить круг его общения. Шипшеры и Лэмбшенки прежде не встречались – то есть встречались только мужчины, которые состояли в одном клубе.
Когда гости прибыли, Сомс быстро сориентировался в ситуации, и вскоре мы уже сидели все вместе. В присутствии Сомса разговор шел неровно, он то вспыхивал, то затухал, поэтому я взял на себя смелость налить всем скромного, но вполне приемлемого шерри, а ему подал двойную порцию.
– Как необычно! Я вижу среди нас трех человек, знакомых между собой, и троих незнакомцев.
– Три – это уже обычно, – пробормотал Сомс, но, заметив мой недовольный жест, не стал развивать тему. Я долил ему вина.
Беатрис попросила меня объяснить свои слова, и я поспешил выполнить ее просьбу.
– Вы, Артур и я – каждый из нас – знаем остальных двоих: вот вам тройка взаимных знакомств.
– Мне кажется, мы с вами больше, чем просто знакомые, Джон, – ответила она.
– Счастлив это слышать, дорогая леди, – сказал я, – но я подбирал слово, которое можно было бы применить к любой паре здесь присутствующих. Напротив, Сомс, вы и Доринда совершенно не знакомы между собой, в том смысле, что до сего дня вы не встречались в обществе. Конечно, слава Сомса намного его обгоняет.
– В самом деле, – сказал Гренвилл, одарив меня кислым взглядом.
– Ну так вот, этот факт кажется мне весьма примечательным…
– А не должен бы, Ватсап, – прервал меня Сомс. – По крайней мере, присутствие одной такой тройки, знакомцев или незнакомцев, не должно казаться чем-то особенным.
– Почему нет? – спросил Артур.
– Потому что по крайней мере одна такая тройка должна возникнуть в любом месте, где соберется вместе шесть человек, – ответил Сомс. – При этом не имеет значения, кто с кем знаком.
– Черт возьми! – воскликнул Артур. – Но это же замечательно, ведь так?
– Как вы можете быть в этом уверены, мистер Сомс? – поинтересовалась Беатрис. Ее глаза сияли – и я подозревал, не только из-за шерри.
– Потому что, моя дорогая мадам, это можно доказать.
– О-о. Продолжайте, пожалуйста, мистер Сомс. Меня чрезвычайно интересуют подобные вещи.
Сомс наклонил голову, но я заметил, что на его губах мелькнула слабая улыбка. Он делает вид, что женские чары не оказывают на него никакого действия, но я-то знаю, что это лишь притворство. Ему просто не хватает уверенности в себе. Я надеюсь, что не будет хватать и дальше, потому что Беатрис очень симпатичная и скромная, настоящая находка для любого достойного мужчины. Для меня, к примеру.
– Доказательство будет понятнее всего, если представить его в виде диаграммы, – сказал Сомс. Он поднялся, подошел к обеденному столу и взял из стопки несколько тарелок и столовых приборов; попутно он отмел все мои возражения вместе с несколькими салфетками, горчицей и горшком с геранью.
– Тарелки представляют нас шестерых, – объявил Сомс, подписывая на тарелках наши инициалы палочкой театрального грима, которая, видимо, сохранилась у него сувениром того времени, когда он обдумывал карьеру на сцене. – Вилка, соединяющая двух людей, означает, что они знакомы; нож между ними означает, что нет.
– Взгляды как кинжалы, значит, – заметила Беатрис. Я поспешил поаплодировать ее остроумию и наполнить ее бокал.
– К примеру, меня и Ватсапа соединяет вилка в центре стола, но со всеми остальными меня соединяет нож. Таким образом, как проницательно заметил Ватсап, треугольник ВАБ состоит из вилок, а треугольник СБД – из ножей. Однако я утверждаю, что, как бы мы ни разложили ножи и вилки, на столе всегда будет присутствовать по крайней мере один треугольник, образованный одинаковыми приборами.
– Но, может быть, оба, мистер Сомс? – спросила Беатрис. Ее глаза не отрываясь следили за каждым его движением.
– Иногда да, мадам, но не всегда. Если взять крайний случай, то есть если на столе окажутся одни только вилки, то никакого треугольника из ножей не образуется; или, если там будут только ножи, не образуется треугольника из вилок.
Беатрис кивнула с серьезным видом.
– В таком случае представляется, – протянула она, – что по мере того, как вилки заменяются ножами и возможность образования треугольника из вилок уменьшается, возможность образования треугольника из ножей, наоборот, увеличивается.
Сомс кивнул.
– Очень хорошо сформулировано, мадам. Для доказательства достаточно всего лишь показать, что второе появляется раньше, чем исчезает первое. Для определенности выберем одну конкретную тарелку. Любую. На нее указывают пять приборов. По крайней мере три из них должны быть одного типа. Почему?
– Потому что если там окажется два одних и два других, то всего приборов будет максимум четыре, – сразу же сказала Беатрис.
– Очень хорошо! – объявил я прежде, чем Сомс успел озвучить аналогичный комплимент.
– Так, – сказал он, – рассмотрим набор из трех одинаковых приборов – будем считать, что это вилки, в случае с ножами будет то же самое, – и посмотрим на тарелки, на которые они указывают. Конечно, на остальные, не на ту, которую выбрали в самом начале. Видим, что либо одна из этих тарелок связана с другой вилкой, либо…
– Все три связаны ножами! – воскликнула она. – В первом случае мы нашли треугольник из вилок, во втором – из ножей. Да, мистер Сомс, теперь, когда вы все это так ясно объяснили, это кажется…
– Совершенно очевидным, – вздохнул Сомс, делая большой глоток шерри.
Это замечание немного остудило ее энтузиазм, и я помахал ей рукой, извиняясь за грубость моего товарища. От ее ответной улыбки у меня потеплело на сердце.
Эта область математики носит название теории Рамсея. Дополнительную информацию см. в главе «Загадки разгаданные».
Как записывать очень большие числа
Сколько песчинок во Вселенной? Архимед, величайший из древнегреческих математиков, решил в порядке борьбы с господствовавшим тогда представлением о том, что ответом на этот вопрос является бесконечность, найти способ выражения очень больших чисел. В его книге «Исчисление песчинок» предполагалось, что Вселенная имеет размеры, которые приписывали ей греческие философы, и что она целиком заполнена песком. Архимед рассчитал, что в этом случае в ней содержалось бы (в нашем десятичном представлении) не более 1 000… 000 песчинок (число с 63 нулями).