Поверхности клетки, образующей электрическую пластинку, сильно отличаются друг от друга. Одна из сторон — гладкая и пересечена вдоль и поперек множеством нервных окончаний, другая имеет глубокие впадины и лишена нервов. В состоянии покоя между двумя поверхностями клетки разность потенциалов отсутствует, и электрический ток не генерируется. Когда рыба хочет оглушить добычу, она генерирует импульс в нерве электрического органа. Это приводит к появлению электрического импульса в пластинке — фактически мышечного потенциала действия, который распространяется только по возбужденной стороне. В результате возникает разность потенциалов между двумя сторонами клетки, достигающая 150 мВ. Поскольку это происходит одновременно во всех электрических пластинках и так как пластинки соединены друг с другом последовательно, напряжения суммируются, доходя до 500 В и более (примерно в четыре раза выше, чем в бытовой электросети в США, и в два раза выше, чем в европейских странах). Тысячи мышечных потенциалов действия, генерируемых одновременно, рождают электрический разряд.
По существу, каждая электрическая пластинка действует как миниатюрная живая батарея, у которой стимулируемая сторона (обращенная к хвосту) имеет отрицательный заряд, а противоположная (обращенная к голове) — положительный. Эти крошечные батареи объединены «голова к хвосту» в длинные столбики. Простой аналогией такого соединения является электрический фонарик, в цилиндрической рукоятке которого находится столбик из батареек, соединенных «голова к хвосту» (положительный полюс к отрицательному). Напряжения этих батареек складываются и в сумме дают уровень, необходимый для питания фонаря. Таким же образом крошечные разности потенциалов, генерируемые отдельными электрическими пластинками при возбуждении, складываются и дают очень высокое напряжение. Чем больше клеток в столбике, тем сильнее удар током. Молодые угри, у которых меньше электрических клеток в столбике, все равно могут сильно ударить током, но этот удар намного слабее, чем у взрослых особей. Удар током непродолжителен по времени, поскольку электрический импульс на возбужденной стороне пластинки пропадает в течение пары миллисекунд. Однако угорь генерирует не отдельный электрический удар, а их поток, выдавая быструю очередь импульсов — до 400 в секунду.
Сверху: электрический угорь имеет три электрических органа, однако сильный электрический разряд, используемый для оглушения добычи, генерирует только главный электрический орган. В середине и внизу: две тонкие, подобные вафле пластинки одного из столбиков главного электрического органа. Когда клетка находится в состоянии покоя (неактивное состояние), ее внутренняя сторона имеет отрицательный заряд, а обе внешние поверхности заряжены положительно. Разность потенциалов между внешними поверхностями при этом отсутствует. Когда угорь генерирует электрический разряд (активное состояние), потенциал на задней поверхности пластинки становится отрицательным, в результате чего между двумя внешними поверхностями возникает разность потенциалов около 150 мВ. Напряжения отдельных электрических пластинок складываются, генерируя сильный разряд.
Хотя разность потенциалов между концами столбика значительна, ток, текущий от конца столбика к окружающей воде, относительно невелик. И это хорошо, иначе клетки угря просто изжарились бы. Однако токи параллельных столбиков суммируются, и совокупный ток достигает значительной величины — порядка одного ампера. Пространство между электрическими пластинками заполнено студенистым веществом с высокой электропроводностью, которое, наверное, и показалось фон Гумбольдту неприятным на вкус. Это вещество выполняет очень важную функцию — оно обеспечивает свободное течение тока от одной пластинки в столбике к другой и от конца столбика к окружающей воде. Не менее важно и то, что каждый столбик хорошо изолирован по всей длине, иначе ток тек бы не вдоль столбика, а поперек него в окружающие ткани угря.
Понятно, что электрические пластинки должны быть как можно тоньше, поскольку чем больше клеток в столбике, тем выше генерируемое напряжение и тем сильнее электрический удар. В то же время чем тоньше клетка, тем быстрее она наполняется ионами натрия, поступающими во время электрического импульса. Это создает проблемы, поскольку снижает градиент концентрации, заставляющий ионы натрия поступать в клетку. Это означает, что при поступлении цепочки импульсов сила электрического импульса, генерируемого каждой клеткой, постепенно снижается. Как следствие, мощность электрического разряда и частота, с которой он может генерироваться, постепенно уменьшаются и, в конце концов, падают до нуля. Электрический орган разряжается — точно так же, как и перегруженная батарея. Именно этот эффект использовали индейцы при рыбной ловле своим оригинальным методом. Подзарядка электрического органа требует времени и осуществляется с помощью молекулярных насосов, которые выкачивают все ионы натрия, попавшие в клетку, и восстанавливают градиент концентрации натрия, дающий энергию электрическому импульсу. Раз, и готово!
Электрический скат Torpedo имеет почти такую же, как и у электрического угря, систему генерирования электрического разряда. Отличия связаны с тем, что он является морской рыбой, а не речной. В пресной воде мало растворенных солей, способных передавать электричество, поэтому ток распространяется не слишком далеко, и угорь должен подобраться довольно близко к жертве, чтобы оглушить ее. В результате угрю нужно значительно более высокое напряжение, чтобы преодолеть сопротивление воды. Морская вода намного лучше проводит электрический ток, чем пресная, из-за более высокого содержания солей, поэтому ток не так быстро затухает с расстоянием. Скат идеально приспособился к морской среде — он генерирует более значительный ток при более низком напряжении, чем Electrophorus.
Два больших, имеющих форму почки электрических органа ската расположены по бокам у его головы. В каждом из них 500–1000 плотно размещенных столбиков примерно из 1000 электрических пластинок. Имея меньше пластинок в столбиках, скат не может генерировать такое же высокое напряжение, как и угорь. Максимальное напряжение разряда составляет около 50 В, примерно в 10 раз меньше, чем у угря. Вместе с тем его ток больше из-за значительно большего числа столбиков — скат способен генерировать ток силой до 50 А и развивать пиковую мощность разряда более одного киловатта. Причиной того, что скат генерирует более высокий ток при более низком напряжении, является более высокая электропроводность среды, в которой он живет. Особенностями морской жизни объясняется и то, почему его электрические органы короткие и широкие, в отличие от угря, у которого они длинные и тонкие. Просто для того, чтобы получить высокий ток при низком напряжении, требуется множество коротких столбиков.
Электрические органы ската расположены с двух сторон от его головы. Траектория течения тока при разряде электрических органов показана на поперечном разрезе рыбы справа.
Столбики электрических пластинок расположены вертикально между верхней и нижней поверхностями крыльев ската. При разряде ток распределяется в окружающей среде так, что его сила максимальна непосредственно над электрическим органом или под ним. Скат использует это явление во время охоты. Он неподвижно лежит на дне до тех пор, пока какая-нибудь рыба не подплывет достаточно близко, а потом резко всплывает, испуская серию оглушающих электрических разрядов и занимая такое положение, в котором жертва получает наиболее сильный удар. После этого скат набрасывается на обездвиженную добычу, охватывает ее крыльями и заталкивает в рот.
Как и у электрического угря нервные окончания расположены только на нижней поверхности пластинок ската. На этой модифицированной мышечной мембране находится так много ацетилхолиновых рецепторов, что они образуют полукристаллическую решетку. По существу это один гигантский синапс. Возбуждение нерва, управляющего электрическим органом, приводит к выбросу нейромедиатора — ацетилхолина (см. главу 4), который открывает ацетилхолиновые рецепторы в нижней мембране электрической пластинки и создает разность потенциалов порядка 100 мВ между двумя сторонами клетки. Это заметно меньше, чем в пластинках электрического угря. Однако главной причиной, по которой скат генерирует более низкое напряжение, является меньшее число клеток в столбике. Генерирование электрического разряда требует много энергии, поэтому разряд не может быть продолжительным. Как и электрический угорь, скат испускает серию импульсов (около 100 в секунду), а каждый разряд длится всего несколько миллисекунд. Почему скат не поражает током себя?
Как и у электрического угря нервные окончания расположены только на нижней поверхности пластинок ската. На этой модифицированной мышечной мембране находится так много ацетилхолиновых рецепторов, что они образуют полукристаллическую решетку. По существу это один гигантский синапс. Возбуждение нерва, управляющего электрическим органом, приводит к выбросу нейромедиатора — ацетилхолина (см. главу 4), который открывает ацетилхолиновые рецепторы в нижней мембране электрической пластинки и создает разность потенциалов порядка 100 мВ между двумя сторонами клетки. Это заметно меньше, чем в пластинках электрического угря. Однако главной причиной, по которой скат генерирует более низкое напряжение, является меньшее число клеток в столбике. Генерирование электрического разряда требует много энергии, поэтому разряд не может быть продолжительным. Как и электрический угорь, скат испускает серию импульсов (около 100 в секунду), а каждый разряд длится всего несколько миллисекунд. Почему скат не поражает током себя?
Почему электрический скат (да и электрический угорь тоже) не оглушает током себя, остается загадкой, которая полностью не разгадана до сих пор. Ток течет от одного конца столбика электрических пластинок к другому, а затем через ткани и кожу в воду. Из-за того, что электрические органы находятся в крыльях, ток не проходит напрямую через сердце и мозг ската. Кроме того, ток, текущий через любую часть тела рыбы, невелик, поскольку каждый столбик электрических пластинок вносит очень небольшой вклад. Жертва тем не менее получает сильный удар в силу того, что слабые токи отдельных столбиков суммируются и в воде возникает намного более значительный ток. Считается, что прослойки жира в коже действуют подобно изоляторам и защищают рыбу от поражения током самой себя. Если кожу оцарапать или повредить (что снижает эффективность этой изоляции), то электрический скат начинает вздрагивать при использовании своего электрического оружия, иными словами, он начинает чувствовать удар током. Конечно, чтобы ток выходил в воду, кожа над электрическими органами не должна быть слишком хорошо изолированной, и действительно, как показывают замеры, кожа сверху и снизу электрических органов ската имеет более высокую электропроводность, чем кожа на других участках тела[23]. Нападение акул
В сентябре 1985 г. телекоммуникационная компания AT&T проложила подводный волоконно-оптический кабель между островами Гран-Канариа и Тенерифе Канарского архипелага. А всего месяц спустя связь была нарушена — кабель замкнуло в 10 км от Тенерифе на глубине 1000 метров. Перед AT&T встала трудоемкая, сложная и дорогостоящая задача поднять кабель и заменить поврежденный участок. Загадочным образом аналогичные повреждения кабеля возникали дважды на следующий год и потом в апреле 1987 г. При тщательном обследовании поврежденных участков на них были обнаружены следы акульих зубов, т.е. кабель перекусывали акулы. Главной подозреваемой стала ложнопесчаная акула Pseudocarcharias kamoharai, у которой были очень мощные челюсти.
Пытаясь понять, что происходит, AT&T занялась рыбной ловлей. Были выловлены и исследованы сотни акул. В одном из экстравагантных экспериментов акуле даже попытались скормить кусок кабеля. «Кабель пришелся акуле не слишком по вкусу, когда его пытались запихнуть в пасть», — отрапортовал сотрудник AT&T Барретт в своем отчете.
Волоконно-оптические кабели укладываются вместе с подводными промежуточными станциями, которые усиливают оптические сигналы. Для питания этих усилителей требуется высокое напряжение, которое подается по медной оплетке, окружающей пучок оптических волокон. Было похоже, что акула прокусывала изоляцию и открывала доступ морской воды к медной оплетке. Это приводило к короткому замыканию системы электропитания и прерывало связь.
Дистанционно управляемые аппараты уже проводили съемку того, как акулы перекусывают электрические кабели. В одном сюжете акула даже возвращается, чтобы еще раз укусить кабель, который не удалось перекусить с первого раза. Проблема в случае волоконно-оптических кабелей заключалась в том, что они намного тоньше старомодных медных кабелей (зачастую не толще садового шланга диаметром примерно 2,5 см) и, таким образом, более уязвимы для зубов акулы. Кроме того, акуле вовсе не нужно перерезать кабель, чтобы нанести серьезное повреждение, — достаточен резкий изгиб. В конце концов AT&T решила «проблему челюстей», обернув кабель двумя слоями стальной ленты и заключив его в толстую полиуретановую оболочку. Выяснилось также, что акулы обычно не охотятся на глубине более 2000 метров, поэтому дополнительная защита от нападений акул не требуется на глубоководных участках. Способность чувствовать электричество
Но зачем акулы нападают на кабель? Вокруг высоковольтного кабеля существует электрическое и магнитное поле. Считается, что акул привлекает электрическое поле кабеля, поскольку они могут реагировать на ничтожные электрические поля, возникающие в результате мышечной активности других организмов, и, таким образом, обнаруживать добычу, даже если она хорошо замаскирована. Отсутствие запахов не мешает акуле отыскивать закопавшуюся в песок камбалу. Она также реагирует на искусственное электрическое поле, величина которого аналогична тому полю, что возникает при дыхательных движениях камбалы, и «нападает». Достаточным оказывается ток силой всего лишь четыре микроампера, поэтому неудивительно, что акулы чувствуют слабые сигналы, исходящие от подводных кабелей.
Классический эксперимент Адриануса Калмейна продемонстрировал, как акулы используют электричество для обнаружения добычи. Акул, пойманных в проливе Ла-Манш и Северном море, поместили в резервуар. (а) Камбала, выпущенная в резервуар, немедленно зарывается в песок, но тут же обнаруживается голодной акулой. (b) Акула находит добычу, даже когда она помещена в агаровую камеру и покрыта песком так, чтобы исключить зрительные, механические или химические способы обнаружения. Так как агар имеет такую же проводимость, что и морская вода, он не препятствует распространению электрических сигналов. (с) Акула перестает находить добычу, если агаровую камеру закрыть тонкой пластиковой пленкой, сопротивление которой достаточно высоко для того, чтобы экранировать электрическое поле камбалы. Это показывает, что акула может чувствовать слабый электрический ток, генерируемый мышцами камбалы при дыхании. (d) Когда камбалу заменяют парой электродов, которые испускают электрический сигнал, подобный ее сигналу, акула атакует электроды и пытается их съесть. (e) Акула больше интересуется электродами, чем лежащим рядом куском рыбы, иными словами, на близком расстоянии электрическое поле является более сильным фактором, чем визуальные или химические сигналы.
Все организмы генерируют ничтожные токи, когда возникают импульсы в нервах или сокращаются мышцы. Неподвижность не спасает — сокращения дыхательных мышц и биение сердца все равно вас выдадут. Когда вы читаете эти слова, мышцы вашего тела создают фон из потрескивающих электрических разрядов. Рыбы, живущие в море, очень хорошо чувствуют эти рассеянные токи. Из-за низкого сопротивления воды (благодаря высокой концентрации растворенных в ней солей) ток распространяется намного дальше: некоторые рыбы способны чувствовать электрические поля напряженностью всего 0,01 мкВ/см (одна десятитысячная часть напряженности, создаваемого батарейкой АА). Неподвижный человек, погруженный в морскую воду по шею, создает электрическое поле напряженностью порядка 0,02 мкВ/см на расстоянии одного метра от тела. Этого более чем достаточно для акулы, чтобы учуять вас.
Электрическое поле могут чувствовать не только акулы, но и многие другие рыбы, включая сомов, скатов, миног, двоякодышащих и кистеперых рыб. Есть основания полагать, что некоторые из них способны даже реагировать на изменение земного электрического поля, предшествующее землетрясению. Возможно, с этим связана японская легенда о том, что землетрясения вызывает гигантский сом, намадзу. Эту рыбу можно встретить в многочисленных прекрасных гравюрах в стиле укиё-э и в более прозаичных современных японских приборах раннего предупреждения о землетрясениях.
«Восприимчивость к электрическому полю» развилась по той причине, что органы чувств, воспринимающие электрические токи, позволяют дифференцировать различные виды рыб. Клетки-электрорецепторы, дающие акулам и скатам возможность исключительно тонко чувствовать электрические поля, расположены в особых органах чувств, известных как ампулы Лоренцини4. Они сконцентрированы на голове акулы в области носа и рта. До сих пор непонятно, как этим клеткам удается достичь такой невероятной чувствительности. В отличие от акул, у костистых рыб в электрорецепторы превратились рецепторы боковой линии, которые чувствительны к движению. Когда вы в следующий раз приготовите целую рыбу на обед, повнимательнее посмотрите на ее бока. Вы увидите тонкую линию, которая тянется по центру бока от головы до хвоста. Это и есть «боковая линия». У большинства рыб органы чувств, являющиеся частью боковой линии, реагируют на изменения давления воды. Однако у некоторых видов рыб рецепторы боковой линии превратились в орган, реагирующий на электрическое поле. Охота в потемках